
UNIX Intro and Basic
C shell Scripting

Khaldoun Makhoul
khaldoun@nmr.mgh.harvard.edu

	

 December 2nd 2010 	

 Why.N.How

1

This talk introduces the audience to the basic use of the UNIX/Linux command line tools and to basic C shell
scripting.

Text	

2010/12/02	

 Why.N.How

Why the command line?

>
?

Old-school Command
Line Interface

Touch

Mouse

???
2

First, some words of motivation:

In a time of increasingly advanced and often *usefully* simplified interfaces, why use something as old and
seemingly retrograde as the command line?

The fact remains that when it comes to power, flexibility, speed and automation (“scriptability”), the command
line is still the best human-computer interface we have. Its old-school look and feel belies a truly powerful set
of tools for doing scientific computing.

The main disadvantage of this interface is its still-steep learning curve. This talk is here to soften that slope
and to enable you to begin learning on your own by introducing a few basic concepts and examples.

Rigor is secondary here: command line, unix shell, terminal, etc. All these words technically refer to disparate
concepts that you may in time wish to distinguish from one another. But for the purposes of this talk, if you are
entering text commands at a text-only prompt, that is all you need to worry about.

(For the curious, we will focus on the tcsh shell, and I am demonstrating this in the Mac OS X Terminal
program.)

Text	

2010/12/02	

 Why.N.How

• Power
• Flexibility
• Speed
• Scriptability

3

Old-school Command
Line Interface

Why the command line?

Text	

2010/12/02	

 Why.N.How

1. Intro – making rm (to delete files) safer
2. Grab-bag of basic commands & info
3. Command options. grep and find

4. A sample backup script
5. Output redirection & pipes
6. Input parameters
7. Looping
8. Conditional statements

4

Outline
This talk will proceed by practical example. I will
expand on relevant concepts as they come up.

Intro to Linux & command line

Intro to scripting

Unix/Linux/GNU and all related topics can be dry enough as it is. This is why this talk essentially skips general
expository material as much as possible. Weʼll dive in by example right away. The general concepts of how
the command line works will be discussed when they come up.

As such, this talk is organized informally by what I deemed useful for a first-time or near-first-time user. The
basic idea is to get you comfortable “moving around” the command line and to get you writing scripts asap.
The fine details, youʼll pick up along the way.

Text	

2010/12/02	

 Why.N.How5

Part I

Intro to Linux &
command line

• A big obstable in the early part of this learning curve is fear of
breaking something

• First step to not breaking stuff: not accidentally deleting stuff

• The rm (remove) command deletes files or directories... but
there’s no “Recycle Bin”!

• Commands/programs/files introduced:
• ls (list files)

• rm (delete files)

• man (diplay manual pages)

• alias (replace typed command by another)

• pico (text editor)

• ~/.cshrc (shell configuration file)

Text	

2010/12/02	

 Why.N.How6

Example 1: making rm safer

Example 1: The command line grants the user more power than most other interfaces, but as a result it also
grants more power to break things. Itʼs important to feel comfortable when learning to use the command line,
so itʼs best to minimize the chance that anything will go wrong.

rm (short for “remove”) is the command to delete a file or files (possibly including folders depending on
command line options – see later slides). It is a problematic command at first because it acts right away
without confirmation (“Are you sure you want to...”) and without a recycle bin. Itʼs best to correct this behavior
so as to make it safer by adding a confirmation. At the very least, youʼll feel more comfortable knowing that
youʼre much less likely to delete anything accidentally.

While this may get tedious after you get comfortable with the command line, itʼs also a useful example to
demonstrate a few basic commands.

Text	

2010/12/02	

 Why.N.How7

Example 1: making rm safer

Type ls to list the
contents of the current

directory (folder)

Type rm file1 to delete
file1 forever.

Note that the next ls
shows that file1 is gone.

No undo here!

Note: always press ENTER or RETURN to execute the command(s) youʼve just typed. ENTER is not carriage
return (next line)! Think before you validate :)

Text	

2010/12/02	

 Why.N.How8

Example 1: making rm safer

Type man rm and hit
ENTER to show the
manual entry for rm

Note the structure:
	

 -Name
	

 -Synopsis (usage)
	

 -Description
	

 -Options

What we’re looking for!

Now letʼs see if we can glean something about rm by reading its manual entry. Type man rm and hit ENTER.
man is a terrifically useful resource. Anytime that you are having trouble with a command, or that youʼre not
sure how a particular command works, your first stop is to check whether it has an entry in man (not all
commands do). If it does, itʼs often the best way to learn how a command works.

Note: to scroll in man, hit SPACE. To scroll backwards hit the letter b. To quit and return to the command line,
type q. To search for a phrase, type /, then type the query, then type ENTER. While in search mode, hit n to
go to the next match, and p to go to the previous match.

You can learn more about man by typing man man and hitting ENTER.... but sadly, itʼs not obvious how to
navigate from the man entry for man, which is why I include it here.

Text	

2010/12/02	

 Why.N.How9

Example 1: making rm safer

Any answer other than
“y” will be interpreted
as “no”, including just

typing ENTER

Now if we type rm -i
file2, the system asks to

confirm first.

Note: the confirmation “dialog” will specify the type of file that youʼre trying to delete. In this case, I created
empty files, hence the message you see here.

Text	

2010/12/02	

 Why.N.How10

Example 1: making rm safer
Of course remembering to

type “rm -i” each time isn’t
exactly useful.

So this is where alias comes in.
If you have a command that

you execute often, you can give
it an alias. For example, I use
as alias for ls -l, which lists

files with more details
(permissions, time, size, etc)

We can make an alias for
rm -i so it’s easier to type.
Better yet, let’s just make it
such that when you type rm,
the system interprets it as

rm -i

There are two things going on here. We could make an alias that allows you to type “del” of “safe_rm” or
anything you like to mean “rm -i”. But if safety is what youʼre after, you can simply make it so that you alias
“rm” itself to mean “rm -i”.

Text	

2010/12/02	

 Why.N.How11

Example 1: making rm safer
Finally, you should note that any alias you use is only in use during your current log in session. As

soon as you close that terminal, all the aliases you created will be gone. To make this change
permanent, you can include it as a line in your .cshrc file, which is a configuration file that is
read-in every time you open a new c shell. Here I use the text editor pico to perform this task.

Comments (indicated by the
initial “#”): these lines are not

interpreted.

The line we’re adding

Previously existing lines: we can
leave these alone

Built-in instructions for pico: ^X
means Control-X

We want to modify the file .cshrc (pronounced, “dot-C-S-H-R-C”. The period at the beginning is the first
character in the file name, and is not optional). This file is located in your home directory (a sort of “My
Documents” for Linux). The character “~” is an alias for your home directory, whatever its actual location in the
filesystem is. The slash, /, is the separator between folders in a hierarchy, or between the folder and the file at
the end of the file path.

You will need to use a text editor at some point in your work, and you might as well get used to it asap. This is
not the same as a word processor in that a text editor always manipulates plain text files (no fonts, no page
layouts, etc... just text). pico is a good first choice because it comes with built-in instructions on how to use it
as soon as you launch it (see the bottow of your terminal window). To save the file after youʼve modified it, type
^O (Control-O). To exit, type ^X (Control-X).

Text	

2010/12/02	

 Why.N.How12

Example 2: More basic commands

• pwd (print working directory)

• mkdir dirname (make directory, i.e. a folder)

• cd dirname (change directory, i.e. go to that folder)

• cp source destination (copy files/dirs)

• mv source destination (move or rename)

• less/more textfilename (display contents of file)

• cat textfilename (concatenate contents of text file)

Syntax is almost always one of the following:
• command
• command options
• command arguments
• command options arguments

Unless you spend your time on the computer deleting files, youʼll want to know a few more commands to get
started. These are the basics of the basics. Your fingers will probably end up typing these out automatically
within a few days of Linux use.

Text	

2010/12/02	

 Why.N.How13

Example 2: More basic commands

• pwd (print working directory)

• mkdir dirname (make directory, i.e. a folder)

• cd dirname (change directory, i.e. go to that folder)

Text	

2010/12/02	

 Why.N.How14

Example 2: More basic commands

• cp source destination (copy files/dirs)

• mv source destination (move or rename)

We copy the file
testFile, and name the
copy copyFile. We then
move the copyFile into

the testDirectory. We
then verify that everything is

as we intended using a
couple ls statements (well,
“ls -l” aliased to “ll”)

Text	

2010/12/02	

 Why.N.How15

Example 2: More basic commands

more allows you to view text
files (no editing). It dumps out
the contents of the file to the

terminal window.

less performs the same
function, but it more powerful
and better suited for longer
files (scrolling, searching, etc).

• less/more textfilename (display contents of file)

Getting around a file using less works like it does when using man:

To scroll, hit SPACE. To scroll backwards hit the letter b. To quit and return to the command line, type q. To
search for a phrase, type /, then type the query, then type ENTER. While in search mode, hit n to go to the
next match, and p to go to the previous match.

. Current directory

.. Parent directory (up one level)
~ User’s home directory

often used as ./ ../ and ~/ since the forward slash
denotes separation between directories in Unix paths

*	

 	

 	

 	

 	

 	

 matches any number of any characters
?	

 	

 	

 	

 	

 	

 matches one of any character
[abc]	

 	

 	

 	

 matches a or b or c

Also useful: the TAB key autocompletes

Text	

2010/12/02	

 Why.N.How16

Example 2: Useful info

These are just a few of the useful things to know about typing commands in the command line.

Text	

2010/12/02	

 Why.N.How17

Example 2: Useful info

Current directory (ex2)

Parent directory (whynhow)

No file called “test”

One file and one directory
that match test* (meaning

“test” followed by anything,
including followed by

nothing)

On TAB autocompletion: it is not necessary to type “ls testFile” to list this file. Itʼs enough to type “ls
testF” and then press the TAB key. The command line autocompletes to the only completion available. If
you type “ls t” then TAB, it will autocomplete to “test” and then wait for user input to differentiate between
testFile and testDirectory.

The parent directory is the one that contains the current directory. So if you create a directory called whynhow
(as I did) and then create inside it directories called ex1, ex2, etc, then whynhow is the parent directory or ex1,
ex2, etc.

• ls -l (list in long format)

• ls -a (list all files including hidden)

• ls -t (list and sort by time)

• ls -r (list and reverse sort order)

• Combinations possible: ls -latr (list all files in
long format in reverse order of recently modified)

Text	

2010/12/02	

 Why.N.How18

Example 3: command options

Almost all commands include options you can invoke if
need be. The syntax is usually command -option.

We first take ls as an example.

Text	

2010/12/02	

 Why.N.How19

Example 3: command options

Listing files with additional
info

Listing all files including
hidden

Listing files, sorting by time

Listing files, sorting by time,
reverse order

Any file which begins with a dot (e.g. “.filename”) is by default a hidden file, which will not be shown by ls
unless specified. Here Iʼve created a file named .hiddenfile to demonstrate how to show it with ls -a.

Listing by time defaults to showing you the oldest files at the bottom. If youʼre interested in seeing the newest
files, itʼs best to use -r to reverse the order and have the newest files at the bottom. This is because a long
scrolling list will chop off (in your terminal window) the top of the list.

• grep searches for string (i.e. text) matches
inside files
grep pattern filelist

• find searches for files matching certain
conditions:
find directory -name ‘filename’

Text	

2010/12/02	

 Why.N.How20

grep and find
grep and find are good examples of the power of the

tools you’ll typically use on Linux. They both become very
powerful as you learn to use their options, but start out as

relatively straightforward pattern-matching tools.

Note the difference between grep and find in syntax. grep places the files to be searched after the pattern,
whereas find first specifies the directory. Besides the order, note that grep asks for a file list (so all the files
in the present directory would be ./*), whereas find asks for just a directory (./).

Text	

2010/12/02	

 Why.N.How21

grep and find

3 files in this directory

First file contains 2 names
and 2 empty lines (shown by

more)

Second file contains 1 name
and 1 empty lines

Third file is empty

grep commands to search
for these patterns in all the
files that are in the current

directory

Being able to match patterns from inside a file is extremely useful, especially once you include matching
conditions using *, ?, and other matching syntax. Youʼll be going through log files and code considerably faster
than you would otherwise.

Text	

2010/12/02	

 Why.N.How22

grep and find

Quotation marks are
required for pattern matching

or the search will fail

Note that grep searches the
contents of files, and will
not match a file that has the

searched pattern only its
filename (here khfile)

Use find to search for
patterns in file names, or
files times, or many many

other file attributes (check
the man page!)

In addition to these simple examples, you can tailor these tools to your liking. Use grep with the -v option to
invoke anti-matching: it will find the lines that do not match the specified pattern. Use find with time
specifiers to find files older than n minutes or newer than m days. And much much more. Check the man
pages!

Text	

2010/12/02	

 Why.N.How23

Part II

Intro to shell
scripting

• A script is a sequence of commands stored
in a text file that can be run like any other
command

• The use of programming constructs such as
variables, loops and conditional statements
make this more powerful than just a saved
list of commands

Text	

2010/12/02	

 Why.N.How24

Scripting basics

At first, a script is useful because it saves you the trouble of typing in the commands you need repeatedly. If
you find yourself performing the same series of steps over and over (say on several data sets), itʼs not only
more convenient, but also better for the reproducibility of your experiment & analysis to write this series of
steps into a script, and then simply run the script.

But the true power of scripting lies in the fact that it enables the use of important algorithmic & programming
contructs (with little user overhead such as compilation of code, etc). If your work requires loops and
conditional statements using command line commands, scripting isnʼt simply a convenience; itʼs the only way
to get your work done.

#!/bin/csh

comment here: very basic backup

cd parentdirectory

rsync -avr originDir backupDir/

Type this into a file called backup.csh

chmod u+x ./backup.csh

./backup.csh

Then make it executable & run it!

Text	

2010/12/02	

 Why.N.How25

Example 4: a backup script

This will demonstrate the simple command list version of a script.

One of the most important computing habits to develop is the use of regular backups. So weʼll demonstrate
putting together a very simple backup script. This script will copy some data from a directory called originDir
(modify for your own needs) to a destination called backupDir. This very simple backup overwrites any
previous backup in the destination directory. In other words, any files which have changed in the origin will
replace the older files in the destination. However, it will not delete files from the destination if they have been
deleted from the source. The options used for rsync are: -a for archive mode (preserve time stamps, file
attribures, etc), -v for verbose so that we see output on the terminal screen of what rsync is doing at all
times, and -r to recursively enter directories and sync everything inside them as well.

After we have written a file called backup.csh, we have to specify that this file is now executable (i.e. not just
readable – for viewing, and writeable – for modifying, but also executable like any other command). We do so
with the chmod command. The syntax is: u for user permission (as opposed to group or other), x for
executable, and + for add this permission (as opposed to remove it).

We then run the script using ./backup.csh. We specify the location of the executable as “this
directory” (using ./) or the system may not know where to find this now-brand-new command called
“backup.csh”.

• The output from command and any errors normally get
dumped to the terminal screen
• It’s useful to save them when running scripts so that you can

examine if anything went wrong
• command > somelogfile will save the output of

command into the file somelogfile

• command >& somelogfile will save the output of
AND any errors resulting from command into the file
somelogfile

• >> and >>& append to the file somelogfile instead of
replacing it
• You can also pipe the output of one command to be the

input of another command using |(SHIFT-backslash on most
keyboards). See example using tee and wc

Text	

2010/12/02	

 Why.N.How26

Example 5: output redirection & pipes

Text	

2010/12/02	

 Why.N.How27

Example 5: output redirection & pipes

log.txt is empty to start

We redirect the output of the
echo command into

log.txt, and check the
content

We try a command we know
will give an error, but >> does
not seem to redirect to the

log file

The use of >>& allows us to
redirect for the normal output

and the error output

Text	

2010/12/02	

 Why.N.How28

Example 5: output redirection & pipes

This time, we use the tee
command to split the output: it

will be shown on the screen
and at the same time go into

the log file.

We say that we have “piped” the output of the echo command to tee as an input. tee
then takes that input, a second input (a file name), and splits the stream from the first input

to copy it into a file whose file name is given by the user

• You can pass input parameters to your script just
like you would to other commands:
myscript param1 param2

• Inside the script, these parameters are referenced
with $1 $2 etc

• Although it’s needless complication for the simple
backup script, we’ll use this for origin & destination
to demonstrate

Text	

2010/12/02	

 Why.N.How29

Example 6: input parameters

Text	

2010/12/02	

 Why.N.How30

Example 6: input parameters

#!/bin/csh
set origin = $1
set destination = $2
echo ""
echo "the directory $origin will be backed up to $destination"

Type this into a file called backup_prep.csh

• Two ways to loop: foreach and while

• foreach is demonstrated here

#!/bin/csh

foreach flipangle (30 60 90 120)

set cmd = (ls -l data_flip${flipangle})

echo $cmd

eval $cmd

end

Credit to A. Stevens for exposure to the very useful “eval”

Text	

2010/12/02	

 Why.N.How31

Example 7: Looping

Text	

2010/12/02	

 Why.N.How32

Example 7: Looping

The script loops through all the
values listed in foreach, and

executes a command each time.

The last value produces an error,
since there is no file with the

name data_flip120: an excellent
time to have a log so that you can

track how your script ran.

• Structure of if statements is simple:

if (expression) then
 commands
 ...
else if (expression) then
 commands
 ...
 ...
else
 commands
 ...
endif

• The fun is in what you can put in (expression)

Text	

2010/12/02	

 Why.N.How33

Conditional statements

• General logic and comparisons in expressions:

•! 	

 	

 	

 	

 	

 	

 logical negation

•&& 	

	

 	

 	

 	

 	

 logical AND

•|| 	

 	

 	

 	

 	

 	

 logical OR

•== 	

 	

 	

 	

 	

 	

 equals

•!= 	

 	

 	

 	

 	

 	

 not equals

•> < <= >= 	

 	

 their usual math meanings

Text	

2010/12/02	

 Why.N.How34

Conditional statements

• File operators

•-e file true if file exists

•-d dir true if dir exists and is a directory

•-z file true if file exists and is zero size

•More at www.csem.duke.edu/Cluster/csh_basics.htm
or at man csh (“File inquiry operators”)

Text	

2010/12/02	

 Why.N.How35

Conditional statements

• Always look at the manual page for any command you’re not
familiar with, or at the very least Google the command for
some basic info.

• Searching man pages (and less output) is done with /
followed by the search phrase followed by RETURN/ENTER.
Cycling through results is done with n (next) and p
(previous). Quitting is done with q.

• Keep track of learned commands and hints in a text file as
you go along. Learning Linux/C shell/scripting really means
learning, then forgetting, then relearning, etc.

• Don’t hesitate to email if there are any questions arising from
this discussion later on: khaldoun@nmr.mgh.harvard.edu

Text	

2010/12/02	

 Why.N.How36

General Hints

