

2

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

3

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

Editor’s Word

Dear Readers,

Summer is here! A season which appeals to affection and sentiments, and of course, vacation time isn’t
complete without a touch of laziness. As Ella sang: ‘Summertime, and the livin' is easy’, it’s indeed a
good time. I hope you will work on unfinished projects, explore the latest technologies, and encounter
numerous exciting tasks. Here, we concertedly continue to publish great lectures for you and take pride
in them as well. Therefore, as you’ll be enjoying a sunset view on your porch, have a quick read at our
BSD Magazine issue to crown the special day.

Now, let’s have a glimpse of what our experts prepared for you. Every month, Rob Somerville and, E.G.
Nathan share interesting ideas and thoughts regarding the world of technology. In fact, we are
privileged to be the platform where some of these great authors choose to share their experiences with
you. So, don’t miss out on their great insights through their columns and articles for this month. For the
FreeBSD enthusiasts, Abdorrahman Homaei has given additional tips from his galore of new tricks in
his article. It’s due to his consistency that we have published over 15 articles so that you can learn
more about FreeBSD.

In this issue, you will also find more articles written by Bob Cromwell. This issue also includes an article
by Carlos Neira, who is a household name for this Magazine. He doesn’t only produce excellent
technical articles for the BSD Magazine but also acts as the instructor for our courses.

I am also delighted to introduce Alexandru Elisei as a man of vast knowledge in his field. This BSD
Magazine issue will feature his first submission, and I am confident that you will love it. Additionally, this
issue offers you a chance to know more about our experts on a personal and professional level. So
make sure to read the interview with Joel Knight. Last, but not the least, meet a great expert and
blogger, Daniele Mazzocchio. He is a great teacher with impressive knowledge, and you can learn more on
his blog: www.kernel-panic.it.

I would also like to mention that I issued the course ebook: Improve Your PostgreSQL Skills by Luca Ferrari
and next week I plan to publish the course ebook: Device Driver Development for BSD by Rafael Santiago.
Both eBooks will help you expand your knowledge and learn more about the said subjects.

So let’s read! If any questions arise in your mind during or after reading the articles, please feel free to
contact me via email: ewa@bsdmag.org. We hope you enjoy reading this issue and develop new skills
with our magazine!

Thank you,

Ewa & The BSD team

4

http://www.kernel-panic.it
http://www.kernel-panic.it
mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org

In Brief 08
In Brief  
Ewa & The BSD Team 
This column presents the latest coverage of breaking news, events, product releases, and trending
topics from the BSD sector.

Virtualization 12 
 
Illumos Containers Using OmniOSce 
Carlos Neira 
Containers have been around almost two decades, starting with FreeBSD jails implementation around
2000. Thereafter, Sun Microsystems took a step further and implemented Solaris Zones around 2004,
which was based on FreeBSD’s jails. Both containerization technologies allow you to partition your
machine further and give you more mileage for your money as it is lighter than hardware virtualization.
This means performance is better as applications run on bare metal. Enhanced security, such that if a
zone or jail is compromised, the attacker is confined to that virtual host. We will learn about Solaris
Zones using an Illumos derivative called OmniOSce, and instructions that could be applied to other
Illumos based distributions.

Developer's Corner 18  
 
bhyvearm64: Virtualization on ARMv8-A 
Alexandru Elisei 
Virtualization is the process of creating a virtual machine that acts like the real hardware for the guest
operating system. Efficient virtualization requires hardware features that reduce the overhead usually
associated with using virtual machines. Looking to enter the server market, ARM has developed the
ARMv8-A architecture which offers such features. We have ported the FreeBSD bhyve hypervisor port
to this architecture and we have called the port bhyvearm64.

FreeBSD 26  
 
iSCSI On FreeBSD 
Abdorrahman Homaei 
iSCSI is a protocol that gives you the ability to share storage over a network at block level. It’s like
connecting new storage to your computer and can format it as you wish. In iSCSI terminology, the
computer that shares the storage is known as the target, and the clients which access the iSCSI
storage are called initiators. FreeBSD originally supports kernel-based iSCSI target and initiator. Many

5

Table of Contents

people are not sure about choosing between DAS (Block-Level directly), NAS (File-Level over the
network) and SAN (Block-Level over the network). Don’t settle for storage based on the amount of
space only; rather, the answers to these important questions should act as a guiding principle. What is
your storage expansion policy? What is your backup policy?

Google Compute Engine 32
HTTP/2 and PHP with Apache on FreeBSD: Not as Simple as It Seems 
Bob Cromwell 
In an earlier article, I showed you how to run FreeBSD on Google Compute Engine, running an Apache
web server with PHP. Now, let's see how to improve its performance with the latest version of HTTP.
HTTP/2 has significant advantages over earlier versions, however, it and PHP don't work together "out
of the box" on FreeBSD, and what appears to be the appropriate fix breaks an otherwise functioning
web server. Follow my investigation of the mystery, and at the end, I'll have assembled a working
configuration for you.

Self Exposure 42  
 
Redundant Firewalls with OpenBSD, CARP and pfsync 
Daniele Mazzocchio 
Firewalls are among the most critical components in network infrastructure, since their failure may
cause entire groups of machines to go offline. The damage may range from the public (web, mail, DNS,
etc.) servers to become unreachable from the outside world up to being unable to surf this website!

Expert Speak by E.G. Nadhan 56
Just Takes 5 Seconds to Grow Your Team Culture  
E.G. Nathan 
How many times have you been in a situation where you are about to sharply critique a co-worker, a
colleague, or an acquaintance for something they did not do right? Well, as it turns out, Gallup’s
workplace research suggests praise should outweigh criticism by a 5-to-1 margin. Five praises for one
criticism (if at all there is one).

Interview 58
Interview with Joel Knight 
Ewa & The BSD Team  
Joel Knight is an original contributing author to the OpenBSD PF User’s Guide
(www.openbsd.org/faq/pf) and the original author of some of the native OpenBSD SNMP MIBs
(packetmischief.ca/openbsd-snmp-mibs, cvsweb.openbsd.org/cgi-bin/cvsweb/src/share/snmp/). He’s
contributed some minor patches to the OpenBSD pf(4) subsystem and network stack over the years. 

6

Column 62
Online shopping and electronic transactions are revolutionizing the way business is being carried
out, both for individuals and corporate entities. Are we entering a golden age of choice, or should
the Latin phrase Caveat Emptor be embedded on every “accept” button for Internet sales?  
Rob Somerville 
I’ve just been ripped off of £153.25 for a Samsung Galaxy J5 mobile phone or to be more accurate,
Amazon has, along with approximately 1,000 other customers who have paid exorbitant amounts of
money to a clearly fraudulent storefront that has exploited a subtle flaw in the E-commerce model that
Amazon, eBay, and PayPal operate. 

7

Editor in Chief:

Ewa Dudzic  
ewa@bsdmag.org  
www.bsdmag.org

Contributing:

Sanel Zukan, Luca Ferrari, José B. Alós, Carlos Klop, Eduardo
Lavaque, Jean-Baptiste Boric, Rafael Santiago, Andrey Ferriyan,

Natalia Portillo, E.G Nadhan, Daniel Cialdella Converti, Vitaly
Repin, Henrik Nyh, Renan Dias, Rob Somerville, Hubert Feyrer,

Kalin Staykov, Manuel Daza, Abdorrahman Homaei, Amit Chugh,
Mohamed Farag, Bob Cromwell, David Rodriguez, Carlos Antonio
Neira Bustos, Antonio Francesco Gentile, Randy Remirez, Vishal
Lambe, Mikhail Zakharov, Pedro Giffuni, David Carlier, Albert Hui,

Marcus Shmitt, Aryeh Friedman

Top Betatesters & Proofreaders:

Daniel Cialdella Converti, Eric De La Cruz Lugo, Daniel LaFlamme,
Steven Wierckx, Denise Ebery, Eric Geissinger, Luca Ferrari, Imad

Soltani, Olaoluwa Omokanwaye, Radjis Mahangoe, Katherine
Dizon, Natalie Fahey, and Mark VonFange.

Special Thanks:

Denise Ebery 
Katherine Dizon

Senior Consultant/Publisher: Paweł Marciniak

Publisher: Hakin9 Media SK,  
02-676 Warsaw, Poland Postepu 17D, Poland 

 worldwide publishing 
editors@bsdmag.org

Hakin9 Media SK is looking for partners from all over the world. If
you are interested in cooperation with us, please contact us via

e-mail: editors@bsdmag.org

All trademarks presented in the magazine were used only for
informative purposes. All rights to trademarks presented in the

magazine are reserved by the companies which own them.

mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org
http://www.bsdmag.org
http://www.bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org

In Brief
DigitalOcean Introduces Kubernetes Product for
Simple, Scalable Container Deployment and
Orchestration
DigitalOcean, the cloud platform for developers and their teams, today announced its DigitalOcean
Kubernetes product, the easiest way to run containerized applications in the cloud. Designed for
developers and businesses who want a simple way to deploy and manage container workloads,
DigitalOcean Kubernetes removes the headache involved in setting up, managing and securing
Kubernetes clusters while incorporating DigitalOcean’s trademark simplicity and ease of use. 
“Over the last year, Kubernetes has emerged as the container orchestration platform of choice, and as
one of the leading public clouds, investing in supporting our customers’ adoption of containers was a
natural evolution to our roadmap,” said DigitalOcean VP of Product Shiven Ramji. “We’ve always been
devoted to providing simple solutions for developers — starting with our cloud servers, Droplets. This
product is no exception, allowing developers to focus on successfully shipping their applications while
not being burdened by the complexity involved with creating and running a highly scalable and secure
cluster across multiple apps.”  
The application container market is estimated to grow to $2.7B by 2020, according to 451 Research.
Further, developers and those in DevOps are growing more committed to Kubernetes: in 2016, just
under half said they were committed to the system but by 2017, 77 percent said the same, according to
the Cloud Native Computing Foundation. Despite Kubernetes’ growing popularity, on its own, it can be
complex for developers to manage. 
By offering Kubernetes integrated with DigitalOcean’s core product suite — which includes Compute
Servers, Block Storage, Object Storage, Firewalls, Load Balancers and more — businesses will have
the freedom to run their existing workloads on DigitalOcean without special configuration. Key features
and benefits of DigitalOcean Kubernetes include: 
Dedicated Managed Kubernetes Cluster: Each customer receives their own cluster, which provides
security and isolation for their containerized applications with access to the full Kubernetes API. 
Integrated Storage Scalability: DigitalOcean products for block storage and object storage are built in,
providing storage for any amount of data.  
Included Security: Cloud Firewalls are included, making it easy to manage network traffic in and out of
the Kubernetes cluster. Additionally, DigitalOcean will provide cluster security scanning capabilities to
alert users of flaws and vulnerabilities. 
Continuous Delivery: Simple integration with popular continuous integration services; developers can
easily set up a full continuous delivery pipeline in two clicks, providing faster and more robust rollout of
new application functionality. 
Team Management: Kubernetes deployments can be a large team effort. DigitalOcean’s “teams” feature
allows development teams to manage access and permissions to the cluster easily. 
Extended Insights: In typical Kubernetes environments, metrics, logs and events can be lost if nodes
are spun down. To help developers learn from the performance of past environments, the DigitalOcean

8

Kubernetes product will store this information separate from the node indefinitely. 
One-click Integrations: Similar to the existing one-click setups and integrations for Droplets, the
product includes one-click integrations to deploy an entire application stack so developers can focus
on solving their business problems and worry less about their Kubernetes cluster setup. 
DigitalOcean Kubernetes will be available through an early access program starting in June with general
availability planned for later this year. Sign up for early access at http://do.co/k8s.

Source: https://www.digitalocean.com/press/releases/digitalocean-introduces-kubernetes-product/

June 19 is FreeBSD Day!
June 19 has been declared FreeBSD Day. Join us in honoring The FreeBSD Project’s pioneering legacy
and continuing impact on technology. 
 
What is FreeBSD? 
 
FreeBSD is an open-source operating system developed out of the University of California at Berkley in
1993. Used by millions of people around the globe, FreeBSD is used to teach operating system
concepts in universities. Companies also develop products on FreeBSD, and universities use it as a
research platform. 
In fact, there’s a good chance you’re already using at least some code derived from FreeBSD in your
everyday life. For example, if you stream movies via Netflix, chat with friends on WhatsApp, or play the
latest PlayStation 4 game sensation, you’re already using FreeBSD. 
As a pioneer in open-source technology, FreeBSD can be modified and redesigned to meet the needs
of the user, free of charge within the guidelines of the license.

Why June 19th 
 
June 19, 1993 was the day the official name for FreeBSD was agreed upon. See part of the email
thread on the original post. 
If you love FreeBSD, celebrate the 25th anniversary of your favorite open source operating system by
doing the following:

• Introducing someone to FreeBSD or hosting an Installfest with your local meetup group Slides and
materials for hosting a FreeBSD installfest.

• From TrueOS to FreeBSD on Virtual Box to Installing Ports, you can find a number of how-tos online.

• Check out the list of companies using and products based on FreeBSD.

• Helping to promote the day by printing and distributing the poster.

• Sending us stories of how your company uses FreeBSD to great success 
Telling us why you love FreeBSD using #FreeBSDDay on your Facebook, Twitter, and Instagram posts

• Consider donating to the Foundation to help us continue our support of the Project.

9

http://do.co/k8s
http://do.co/k8s
https://www.digitalocean.com/press/releases/digitalocean-introduces-kubernetes-product/
https://www.digitalocean.com/press/releases/digitalocean-introduces-kubernetes-product/

• Check out and share BSDNow’s 6 hour retrospective of interviews from the FreeBSD community
including an interview with Dr. Kirk McKusick from BSDCan 2018.

We look forward to commemorating the 25th anniversary of our favorite open-source operating system
on June 19, and we hope you’ll join us!

Source: https://www.freebsdfoundation.org/national-freebsd-day/

TrueOS to Focus on Core Operating System
The TrueOS Project has some big plans in the works, and we want to take a minute and share them
with you. Many have come to know TrueOS as the “graphical FreeBSD” that makes things easy for
newcomers to the BSDs. Today, we’re announcing that TrueOS is shifting our focus a bit to become a
cutting-edge operating system that keeps all of the stability that you know and love from ZFS
(OpenZFS) and FreeBSD, and adds additional features to create a fresh, innovative operating system.
Our goal is to create a core-centric operating system that is modular, functional, and perfect for
do-it-yourselfers and advanced users alike.

TrueOS will become a downstream fork that will build on FreeBSD by integrating new software
technologies like OpenRC and LibreSSL. Work has already begun which allows TrueOS to be used as a
base platform for other projects, including JSON-based manifests, integrated Poudriere / pkg tools and
much more. We’re planning on a six-month release cycle to keep development moving and fresh,
allowing us to bring you hot new features to ZFS, bhyve and related tools promptly. This makes TrueOS
the perfect fit to serve as the basis for building other distributions.

Some of you are probably asking yourselves “But what if I want to have a graphical desktop?” Don’t
worry! We’re making sure that everyone who knows and loves the legacy desktop version of TrueOS
will be able to continue using a FreeBSD-based, graphical operating system in the future. For instance,
if you want to add KDE, just use sudo pkg install kde and voila! You have your new shiny desktop.
Easy right? This allows us to get back to our roots of being a desktop agnostic operating system. If you
want to add a new desktop environment, you get to pick the one that best suits your use.

We know that some of you will still be looking for an out-of-the-box solution similar to legacy PC-BSD
and TrueOS. We’re happy to announce that Project Trident will take over graphical FreeBSD
development going forward. Not much is going to change in that regard other than a new name! You’ll
still have Lumina Desktop as a lightweight and feature-rich desktop environment and tons of utilities
from the legacy TrueOS toolchain like sysadm and AppCafe. There will be migration paths available for
those that would like to move to other FreeBSD-based distributions like Project Trident or GhostBSD.

Source: https://www.trueos.org/blog/trueosdownstream/

10

https://www.freebsdfoundation.org/national-freebsd-day/
https://www.freebsdfoundation.org/national-freebsd-day/
http://www.project-trident.org/
http://www.project-trident.org/
https://www.trueos.org/blog/trueosdownstream/
https://www.trueos.org/blog/trueosdownstream/

11

Virtualization

Illumos Containers Using
OmniOSce
Containers have been around almost two decades starting with FreeBSD jails implementation around
2000. Thereafter, Sun Microsystems took a step further and implemented Solaris Zones around 2004,
which was based on FreeBSD’s jails. Both containerization technologies allow you to partition your
machine further and give you more mileage for your money as it is lighter than hardware virtualization.
This means performance is better as applications run on bare metal. Enhanced security such that if a
zone or jail is compromised, the attacker is confined to that virtual host. We will learn about Solaris
Zones using an Illumos derivative called OmniOSce, and instructions that could be applied to other
Illumos based distributions.

What you will learn:

• What is a zone.

• Create and configure a zone.

• Define resource limits for a zone.

What you should know:

• Command line familiarity.

What you will need:

• OmniOSce bloody version or the latest LTS.

12

What is a Zone?

A Solaris Container or Zone is the operating
system-level virtualization.This abstraction
makes processes in a Zone to believe that they
are running on their kernel copy, but in reality,
there is only one kernel doing all the work. For
this abstraction to be useful resource, control
facilities exist along with means for the zone to
access hardware devices that are in the global
zone. A global zone is one where all processes
for all zones are available to peak into.
Additionally,the global zone is where nonglobal
zones are created, commonly referred to as GZ
and NGZ.

Operations on NGZ like creation, deletion,
configuration, booting, and halting are all done
using two tools called zonecfg and zoneadm.

ZONECFG(1M)

This tool allows you to create or edit a zone
definition. A zone is defined by the available
resources it will have such as network interfaces,
file systems, CPUs , devices, security
constraints, brand, memory, and the resource
control rules on the zone i.e., memory capping,
maximum of processes allowed, etc.

ZONEADM (1M)

As the name implies, this tool allows you to
administer a zone, so you could perform actions
like start a zone, reboot it, stop it, or clone it. For
more in-depth information, refer to the man
page.

 
To list our available zones, we use zoneadm and
the list operation.

 
Here is the explanation of the columns in this
output:

• ID - A number representing the global zone ID,
which is always 0.

• STATUS - A configured status reflects that the
zonecfg has introduced the zone definition and
the zone is ready to be installed. An installed
status implies that it is ready to boot the zone
and transition to the running state.

• PATH - The path where the zone data set
resides.

• BRAND - A brand is a configured zone. It
manages how a zone is set up during
installation, and which application a system
call table implements. In the LX brand, the
Linux system call table allows running of
unmodified Linux applications in a zone. The
types of zones that are available in Omniosce
are ipkg, lipkg, sparse, and lx. Let’s give a brief
explanation of each type of brand.

13

• ipkg - The ipkg brand has a complete
independent filesystem from the host system
(global zone).

• sparse - The sparse only requires /etc to be
generated at installation as it uses a read-only
loopback of filesystems from the global zone.
Thus, you could run many sparse zones in a
modest machine since it consumes low disk
space.

• lipkg - This is a Linked image zone. It links the
packages in a zone to the global zone. If you
update the global zone’s packages, the
linked-image zones get updated alongside it.

Creating and configuring a zone

Let’s start by creating a zone definition. To do
this, we will use zonecfg.

We will create a sparse branded zone with a
filesystem stored in the /zones/test zfs dataset,
and it will have its own IP address. We will use
the virtual network interface called test0.

Type the following as root or with an account
that has a Primary Administrator role.

First, we need to install the sparse brand in
OmniOSce.

pkg install brand/sparse

Next, we need to create the virtual network
interface (vnic) that the zone will use.

dladm create-vnic -l igb0 vnic0

Also, let’s create a dataset on where our zones
will live (replace rpool with your own pool).

zfs create -o mountpoint=/zones
rpool/zones

We are now ready to create our zone.

zonecfg -z test

test: No such zone configured

Use 'create' to begin configuring a new
zone.

zonecfg:test> create

zonecfg:test> set brand=sparse

zonecfg:test> set zonepath=/zones/test

zonecfg:test> set ip-type=exclusive

zonecfg:test> add net

zonecfg:test:net> set physical=vnic0

zonecfg:test:net> end

zonecfg:test> verify

zonecfg:test> commit

zonecfg:test> exit

If all went well, the zone would be in configured
status (you can check the current state with a
zoneadm list -icv)

Now, let’s install it

zoneadm -z test0 install

Next, please see Figure 1. After this, the zone is
ready, and we can boot it and setup networking.

zoneadm -z test boot

zlogin test

ipadm create-if vnic0

ipadm create-addr -T static -a
local=IP_FOR_YOUR_ZONE/y vnic0/v4

echo YOUR_GATEWAY_IP >
/etc/defaultrouter

echo 'nameserver 8.8.8.8' >
/etc/resolv.conf

cp /etc/nsswitch.{dns,conf}

svcadm restart routing-setup

ping google.cl

google.cl is alive

14

This is the basic zone, with most of its properties
taking the default values since we chose to omit
them. That means this zone has no restrictions
on how much memory or CPU it will use.

Thus, we need to define the memory limits.

Define resource limits for a zone

Now that we have a zone, we need to set limits
on it. You will mostly be using the following:

• zone.cpu-cap - Sets the absolute limit on the
amount of CPU resources for this zone can
use. You could use a decimal number to
express how many CPUs the zone will have
available.

• zone.cpu-shares - Sets the limit for the
number of fair share scheduler (FSS) CPU
shares for this zone.

• zone.max-locked-memory - Limits the total
amount of physical locked memory available to
a zone.

• zone.max-lwps - Limits the maximum number
of LWPs available to this zone, hence
enhancing resource isolation.

• zone.max-swap - Limits the total amount of
swap that can be consumed by user process
address space mappings and tmpfs mounts
for this zone.

15

Figure 1. A ZFS file system is created for this zone

Let’s make our zone only able to use 2GB of
RAM. First, we need to stop it.

zoneadm -z test halt

zonecfg -z test “add rctl;set
name=zone.max-locked-memory;add value
(priv=privileged,limit=2147483648,action=d
eny);end; add rctl;set
name=zone.max-swap;add value
(priv=privileged,limit=2147483648,action=d
eny);end; “

If we need to apply this restriction while the zone
is running, we need to use PRCTL(1)

prctl -n zone.max-swap -r -v 2G `pgrep

-z test init`  
prctl -n zone.max-locked-memory -r -v 2G

`pgrep -z test init`  
prctl -n zone.max-physical-memory -r -v
2G `pgrep -z test init`

Tools available to manage zones

The community has created tools to automate
the creation of zones. Therefore, you are not
forced to use zoneadm or zonecfg to create your
zones. Currently, the following tools are under
development:

• LXADM (http://www.lxadm.org/)

It’s a tool created in Perl which allows you to
create lx branded zones easily.

• VMADM (https://github.com/joyent/smartos-live/)

It’s the default tool for managing smart machines
(zones) on SmartOS. Additionally, zone
definitions are created based on json then feed
to vmadm to create the actual zone. You must be
running SmartOS to use it.

Conclusion

In this basic walkthrough on zones, we have
witnessed the simplicity of use and that the
resource control facilities on the operating
system allow us to run a considerable number of

zones (hardware permitting). We have also not
seen lx branded zone which could run
unmodified Linux applications.

References

https://docs.oracle.com/cd/E36784_01/html/E36
848/z.config.ov-13.html

https://omniosce.org/

https://wiki.smartos.org/display/DOC/Building+S
martOS+on+SmartOS

Meet the Author

Carlos Neira is a software engineer interested in
performance, debuggability, and observability of
systems. He has spent most of his career as a
software developer debugging issues on Linux,
FreeBSD, Solaris, and Z/OS environments.

You can reach him at cneirabustos@gmail.com.

16

http://www.lxadm.org/
http://www.lxadm.org/
https://github.com/joyent/smartos-live/
https://github.com/joyent/smartos-live/
https://docs.oracle.com/cd/E36784_01/html/E36848/z.config.ov-13.html
https://docs.oracle.com/cd/E36784_01/html/E36848/z.config.ov-13.html
https://docs.oracle.com/cd/E36784_01/html/E36848/z.config.ov-13.html
https://docs.oracle.com/cd/E36784_01/html/E36848/z.config.ov-13.html
https://omniosce.org/
https://omniosce.org/
https://wiki.smartos.org/display/DOC/Building+SmartOS+on+SmartOS
https://wiki.smartos.org/display/DOC/Building+SmartOS+on+SmartOS
https://wiki.smartos.org/display/DOC/Building+SmartOS+on+SmartOS
https://wiki.smartos.org/display/DOC/Building+SmartOS+on+SmartOS
mailto:cneirabustos@gmail.com
mailto:cneirabustos@gmail.com

17

Join Us

www.bsdmag.org

http://www.bsdmag.org
http://www.bsdmag.org

Developer's Corner

bhyvearm64: Virtualization
on ARMv8-A

Virtualization is the process of creating a virtual machine that acts like the real hardware for the guest
operating system. Efficient virtualization requires hardware features that reduce the overhead usually
associated with using virtual machines. Looking to enter the server market, ARM has developed the
ARMv8-A architecture which offers such features. We have ported the FreeBSD bhyve hypervisor port
to this architecture and we have called the port bhyvearm64.

• Introduction

• Why ARMv8?

• Hypervisor Architecture

• CPU Virtualization

• Memory Virtualization

• Interrupt Virtualization

• Timer Virtualization

• Conclusion

18

Introduction

Virtualization has been used since the 1960s and
it has gained widespread adoption in recent
times due to the benefits offered by virtual
machines: partitioning of hardware resources,
isolation between virtual machines and the host
operating system and encapsulation of an entire
system in one file. To enforce the properties that
make virtual machines desirable, different
software techniques have historically been used:
software management of the virtual and physical
machine state, shadow page tables, full
emulation of interrupts, etc. In some cases, the
performance penalty associated with these
techniques was quite severe, for example as
much as 75% in certain workload scenarios
when shadow page tables were used [1].

To get around these limitations hardware
designers have implemented different features
that reduce the virtualization overhead: Extended
Page Tables (EPT, on Intel hardware) or the
equivalent Rapid Virtualization Indexing (RVI, on
AMD hardware) for memory access, Virtual
Machine Control Structure (VMCS) for saving
virtual machine state, etc.

bhyvearm64 leverages the features offered by
the ARMv8-A architecture to achieve full
virtualization on the FreeBSD operating system.
The hypervisor is dependent upon the
virtualization extensions being implemented by
the CPU, which are an optional part of the official
architecture specification.

To achieve isolation of the virtual machine and to
prevent the guest from directly accessing the
hardware, a third CPU execution mode is used,
designed specifically for use in a virtualized
environment. To reduce the software overhead of
managing the guest’s paging table structures, a
second stage of address translation is used by
the hardware to restrict access to the physical
memory. And to allow the guest to use I/O, the
interrupt controller is partially virtualized in
hardware and partially using software emulation.

bhyvearm64 is able to boot a guest FreeBSD
operating system and enter user land. However,
the virtual machine is limited to a single virtual
CPU.

Why ARMv8?

ARM has usually been associated with mobile or
low power computing, but in recent times they
have been trying to gain a portion of the server
market. In a presentation from 2015 they
estimate that 20% of the server market will use
chips developed by ARM by 2020 [2]. Cavium
has recently released version 2 of their ThunderX
implementation of the ARMv8-A architecture and
in a paper focused on benchmarking Cavium’s
offering against Intel’s [3] the authors note that:
„[..] ARM-based processors are now capable of
providing levels of performance competitive with
state-of-the-art offerings from the incumbent
vendors, while significantly improving
performance per Dollar”.

On the desktop side, Gigabyte is offering
ThunderXStation, a development workstation
that uses the ThunderX2 chip. The station is
aimed at „ARM software development for
Android, gaming, embedded and NFV
applications” [4].

ARM has also unveiled their Cortex-A76
processor in May 2018 which according to ARM
offers „laptop-class performance with mobile
efficiency” [5].

Hypervisor architecture

bhyvearm64 has been developed for the
ARMv8.0-A version of the 64 bit ARM
architecture. The virtualization extensions are
required in order for the hypervisor to function.
Later revisions of the architecture include several
extensions to the virtualization capabilities of the
CPU, and in its current state the hypervisor
doesn’t make use of them.

The arm64 version of the bhyve hypervisor
shares the same general architecture with the

19

x86 version. The hypervisor is composed of
three user space utilities that communicate with
the hypervisor’s vmm kernel module via a special
device, as shown in Figure 1.

Figure 1. Hypervisor Architecture

Unlike the x86 version of bhyve, the userspace
utilities accept only a minimal set of parameters.
As the hypervisor evolves, similar parameters will
be added.

Listing 1. bhyveload usage

Usage: bhyveload [-h] [-k <kernel-image>] [-e
<name=value>] [-b base-address]

 [-m mem-size] [-l
load-address] <vmname>

 -k: path to guest kernel image

 -e: guest boot environment

 -b: memory base address

 -m: memory size

 -l: kernel load address in the guest
physical memory

 -h: help

Listing 1 shows how bhyveload can be used to
create a virtual machine with the unique name
<vmname>. After the bhyveload process
terminates, the virtual machine is created:
memory has been allocated, the guest kernel
image has been copied to memory, the
hypervisor control structures have been
initialized and the special device used to
communicate with the kernel module is in place.
At this point the virtual machine isn’t yet running
and bhyve can be used to start the guest.

When the FreeBSD arm64 kernel boots on bare
metal it expects a pointer to the virtual address
where metadata about the kernel image is
stored. This metadata contains information about
the modules compiled in the kernel and the
address and length of the image. The metadata
is created by the bootloader by parsing the
kernel image. bhyveload parses the guest kernel
image in a similar manner to create the list.

Listing 2. bhyve usage

Usage: bhyve [-bh] [-c vcpus] [-p pincpu]
<vmname>

 -b: use bvmconsole

 -c: # cpus (default 1)

 -p: pin vcpu 'n' to host cpu 'pincpu +
n'

 -h: help

Listing 2 shows how bhyve is used to start the
virtual machine. The virtual machine has to be
created beforehand by using bhyveload. The
<vmname> argument identifies the special
device /dev/vmm/<vmname> which will be used
to start the guest. A new thread is created for
each of the guest CPUs which will wait in an
infinite loop for events from the guest, which are
used for emulation. At the moment only one
thread is started because the hypervisor only
supports one virtual CPU per virtual machine.

20

Of special mention is the -b knob used by bhyve.
This means that the guest was compiled to use a
special character device, bvmconsole, to print to
standard output. bvmconsole guest writes work
by emulating MMIO accesses done by the virtual
machine and its inner workings will be detailed
in the Memory Virtualization section. As for
bvmconsole reads, they are done by the guest
by polling a special memory location.

bhyvectl is used on x86 to inspect and modify
the state of the guest and to shutdown the virtual
machine. At the moment we haven’t
implemented any bhyvectl functionality.

CPU Virtualization

To separate unprivileged processes from the
kernel, all ARMv8 CPUs implement two
execution modes, or Exception Levels (EL). The
first execution mode, EL0, is the least privileged
mode used by user processes and EL1 is used
for running the FreeBSD arm64 kernel. Any
software running in this execution mode has
complete control over the hardware.

Because virtualization requires that the guest
virtual machine behaves like it is running on bare
metal and is otherwise unable to determine that
it is executing in a virtualized environment, we
have decided to run the guest operating system
in the same execution mode – EL1 - as the host
kernel. To ensure that the host remains in
complete control over the hardware we have
used a split hypervisor approach as the ARMv8
version of the KVM hypervisor [6].

As seen in Figure 1, we use a third execution
mode, EL2, designed specifically for
virtualization. We use a technique called
trap-and-emulate for running the virtual machine:
a small part of the hypervisor code runs in this
execution mode we configure it to trap privileged
instructions (instructions that target the hardware
directly) executed at lower exception levels.

When the guest is running in EL1, we trap
privileged instructions to EL2. Then we change

the CPU control configuration to allow direct
access to the hardware and we return execution
to the host kernel to emulate the instruction on
behalf of the guest. When the emulation is done,
we resume the guest.

The guest and the host can run on the same
CPU and when switching execution between the
two we need to have a mechanism for saving
and restoring the machine state. On x86, this
mechanism is implemented in hardware and
each virtual machine has a VMCS structure
associated. On ARMv8, this is not available and
we had to write the assembly code used for
saving and restoring the registers that are
changed when a process (in privileged or
unprivileged mode) is executing.

Each virtual machine has a struct hyp (a C
language structure) associated which represents
the hypervisor context for the entire virtual
machine. This struct has an array of struct
hypctx which represents the virtual CPUs
context. At the moment, bhyvearm64 can only
manage a virtual machine with a single CPU, but
we plan to add support for multiple virtual CPUs
in the future.

Memory Virtualization

From the host’s perspective, the virtual machine
is nothing more than a regular user process, and
like all user processes it shouldn’t have direct
access to physical memory.

One of the first techniques used to restrict guest
access to physical memory was shadow page
tables. These tables were maintained by the
hypervisor and used by the hardware to do
address translation. The hypervisor also had
access to the guest page tables by trapping
writes to the register that holds the physical
address of the tables. Each page fault was then
intercepted by the hypervisor which allocated
physical frames as needed by the guest [7].

Hardware designers have implemented a
technique to restrict a virtual machine’s access

21

of the physical memory similar to how the kernel
treats user processes. When it comes to regular
processes (that is, not a virtual machine), the
kernel uses page tables which translate a
program’s virtual address into a physical
address. For virtual machines the approach is
similar: all the addresses generated by the guest
as a result of address translation are subjected
to a second translation step which results in the
real physical address.

This technique has different names when
implemented by different manufacturers:
Extended Page Tables (EPT) on Intel hardware,
Rapid Virtualization Technology (RVI) on AMD
CPUs, and Stage 2 Translation on ARMv8 CPUs.

Figure 2. Stage 2 Translation

Figure 2 is a schematic of this process. The
guest maintains its own page tables, just like the
host kernel does. Remember that the guest must
not be aware that it is running in a virtualized
environment. When the guest is running, we
activate the second stage of translation and all
the physical addresses generated by the guest
(ARM calls these addresses Intermediate
Physical Addresses, or IPA) will be translated
using a different set of page tables to the real
physical address. The second set of page tables
is created and maintained by the hypervisor and
this is how the guest has restricted memory
access.

Using the second stage of translation also
provides the added benefit of being able to
control when we want to trap guest memory
accesses for emulation purposes. An exception

is created when the virtual machine tries to read
or write a guest’s physical address that isn’t
mapped in the stage 2 tables. The hypervisor
then switches execution to the host and
emulation can be performed. This technique is
used when the guest tries to write to standard
output by using bvmconsole and emulating the
memory-mapped components of the interrupt
controller.

The second stage translation tables have a
different format than the page tables used by the
kernel. We have implemented the second stage
tables in the machine-dependent part of the
FreeBSD memory subsystem.

Interrupt Virtualization

Input/output devices are significantly slower than
the CPU. To communicate efficiently with these
devices, interrupts are used. Interrupts are
electrical signals that are asynchronous (they can
come at any time regardless of what the CPU is
doing) and when they become active, the CPU
starts executing code from a predefined address
from memory which depends on the type of
interrupt.

A virtual machine isn’t complete without virtual
interrupts. At the bare minimum, the guest OS
needs timer interrupts to be able to keep track of
time and perform process scheduling.

We have focused on virtualizing version 3 of the
ARM interrupt controller, called Generic Interrupt
Controller v3, or GICv3.

The GIC uses a mixture of system registers and
memory-mapped registers to configure and
control interrupts. Figure 3 represents the three
main components of the interrupt controller.

22

Figure 3. GIC Architecture [8]

The Distributor and Redistributor are
memory-mapped and the CPU interface can be
accessed by using physical registers. The
Distributor controls global interrupts, called
Shared Peripheral Interrupts (SPI), and the
Redistributor controls interrupts targeted at one
CPU: the Software Generated Interrupts (SGI)
and Private Peripheral Interrupts (PPI). The CPU
interface is used for processing interrupts.

The fourth type of interrupts are the
Locality-specific Peripheral Interrupts (LPI) which
are message-based interrupts. They are
controlled by the Interrupt Translation Service
(ITS in the image). We haven’t virtualized LPIs or
the ITS.

Virtualization of the interrupt controller is done in
part in hardware and in part in software. For the
CPU interface registers, the GIC provides
hardware-assisted virtualization which is
controlled by software running in EL2. For
memory-mapped components, the virtualization
is done by using trap-and-emulate instead. The
hypervisor stores the state of the Distributor and
Redistributors and each memory access to these
registers is trapped. For each trapped instruction
the hypervisor updates the state of the emulated
registers accordingly.

Timer Virtualization

A timer is essential for any operating system:
without it, there could be no process scheduling.
Operating systems also use a timer for
scheduling periodic tasks, either as a
functionality offered to user space processes, or
for internal use.

The timer on the ARMv8 platform is called the
Generic Timer. The Generic Timer is composed
of two different components: the physical timer
and the virtual timer, which shows the same time
as the physical timer minus a fixed offset.

For virtualizing the timer, the ARMv8.0 platform
provides controls to trap access to the physical
timer (later extensions provide controls to trap
accesses to the virtual timer too). When a timer
is scheduled to fire by the guest, we create a
callout in the host which will inject the
corresponding interrupt.

Conclusion

Using hardware-assisted virtualization we have
been able to write a working hypervisor on the
ARMv8-A platform. The virtualization features
offered by ARM serve a similar purpose as those
available on the x86 platform.

The architecture provides a distinct privilege
level which we have used to control a guest to
provide the isolation expected from a virtual
machine.

To restrict the guest’s access to physical
memory we have used a second address
translation step called Stage 2 Translation. This
has required some changes to the
machine-dependent pmap component of the
FreeBSD memory subsystem.

Interrupt controller virtualization was the first
step in making the virtualization of I/O devices
possible. Using this virtualized interrupt
controller we have then created a timer for the
virtual machine.

23

References

Advanced Micro Devices, Inc. (2018, Jun.)
AMD-V Nested Paging. [Online]. Available:
http://developer.amd.com/wordpress/media/201
2/10/NPT-WP-1%201-final-TM.pdf

The Register (2018, Jun.) ARM plans to win 20
per cent of the server market by the year 2020.
[Online]. Available:
https://www.theregister.co.uk/2015/03/23/arm_pl
ans_to_win_20_per_cent_of_the_server_market_
by_the_year_2020/

S. McIntosh-Smith, J. Price, T. Deakin and A.
Poenaru (2018, Jun.) Comparative Benchmarking
of the First Generation of HPC-Optimised Arm
Processors on Isambard. [Online]. Available:
https://uob-hpc.github.io/assets/cug-2018.pdf

Cavium Inc. (2018, Jun.) Gigabyte announces
ThunderXStation: Industry’s first Armv8
Workstation based on Cavium’s ThunderX2
Processor. [Online]. Available:
https://cavium.com/news/gigabyte-announces-t
hunderxstation-industry-s-first-armv8-workstatio
n-based-on-cavium-s-thunderx2-processor

Anandtech (2018, Jun.) Arm’s Cortex-A76 CPU
Unveiled: Taking Aim at the Top for 7nm. [Online].
Available:
https://www.anandtech.com/show/12785/arm-c
ortex-a76-cpu-unveiled-7nm-powerhouse

K. Dall and J. Nieh (2018, Jun.) KVM/ARM: The
Design and Implementation of the Linux ARM
Hypervisor. [Online]. Available:
http://www.cs.columbia.edu/~nieh/pubs/asplos2
014_kvmarm.pdf

J. E. Smith and R. Nair, Virtual Machines:
Versatile Platforms for Systems and Processes,
Morgan Kaufmann Publishers, 2005.

ARM Limited. (2018, Jun.) ARM Generic Interrupt
Controller Architecture Specification GIC
architecture version 3.0 and version 4.0. [Online].
Available:

https://static.docs.arm.com/ihi0069/d/IHI0069D_
gic_architecture_specification.pdf

Links

bhyvearm64 project:
https://github.com/FreeBSD-UPB/freebsd/tree/p
rojects/bhyvearm64

Utilities and tutorial for installing and running
bhyvearm64:
https://github.com/FreeBSD-UPB/bhyvearm64-u
tils

Meet the Author

Alexandru Elisei is a 4th year college student
studying Computer Science at University
Politehnica of Bucharest. He is very passionate
about computers and open source software. He
has made contributions to various open source
projects, like Gentoo or Moodle, as well as
taking part in the Google Summer of Code
program as a student developer.

24

http://www.cs.columbia.edu/~nieh/pubs/asplos2014_kvmarm.pdf
http://www.cs.columbia.edu/~nieh/pubs/asplos2014_kvmarm.pdf
http://www.cs.columbia.edu/~nieh/pubs/asplos2014_kvmarm.pdf
http://www.cs.columbia.edu/~nieh/pubs/asplos2014_kvmarm.pdf

25

Buy  
Your Ebook  

on  
www.bsdmag.org

http://www.bsdmag.org
http://www.bsdmag.org

FreeBSD

iSCSI On FreeBSD

• What is iSCSI?	

• File-Level Or Block-Level?	

• iSCSI and ZFS	

• FreeBSD iSCSI Target	

• iSCSI Mutual Authentication	

• Windows 2016 as iSCSI Initiator	

• Windows 2016 iSCSI Tuning

26

What is iSCSI?

iSCSI is a protocol that gives you the ability to
share storage over a network at block level. It’s
like connecting new storage to your computer
and can format it as you wish.

In iSCSI terminology, the computer that shares
the storage is known as the target, and the
clients which access the iSCSI storage are called
initiators.

FreeBSD originally supports kernel-based iSCSI
target and initiator.

File-Level Or Block-Level?

It's really up to you. Many people are not quite
sure about choosing between DAS(Block-Level
directly), NAS(File-Level over the network) and
SAN(Block-Level over the network). Don’t settle
for a storage based on the amount of space only,
rather, the answers to these important questions
should act as a guiding principle

What is your storage expansion policy?

If you can expand your storage locally and have
a linear expansion ratio, it means you have
suitable time and resources to prepare your
storage. Therefore, you can use DAS, NAS, SAN
or combine them as you want. But if you can't
estimate the growth ratio and it's not linear, it's
better to choose something over the network,
like NAS or SAN.

What is your backup policy?

There are three types of backup: Full,
Incremental, and Differential.

Incremental backs up only the changed data
since the last full or incremental backup,
whereas the differential backs up only the
changed data since the last full backup.
Incremental backup is most suitable for
network-enabled like NAS or SAN because of
the needed network bandwidth.

What is your access policy?

If you have to write at the same time in the same
area, NAS is required because block-level
access can corrupt your data.

iSCSI and ZFS

ZFS is capable of creating a volume of the given
size as a block device in /dev/zvol/path, where
the path is the name of the volume in the ZFS
namespace. Then, iSCSI can use this block
device like a separate hard disk.

The point is, zvol must be fixed size and can't
expand later (you can't change your hard disk
size). However, you can use multiple zvols at
RAID manner on your initiator and must stop
writing on backup (incremental backup) within
short moments.

FreeBSD iSCSI Target

FreeBSD manages the iSCSI with a configuration
file located in /etc/ctl.conf. Add a line to
/etc/rc.conf to make sure the ctld daemon is
automatically started at boot, and then start the
daemon.

sysrc ctld_enable=YES

Below is a sample of ctl.conf :

portal-group pg0 {

 discovery-auth-group
no-authentication

 listen 192.168.1.10

}

portal-group pg1 {

 discovery-auth-group
no-authentication

 listen 192.168.2.10

}

27

auth-group ag0 {

 chap iscsi1 iscsi0pass123456

}

auth-group ag1 {

 chap iscsi2 iscsi1pass123456

}

target
iqn.2018-05.com.meetbsd.storage:target0 {

 auth-group ag0

 portal-group pg0

 lun 0 {

 path
/dev/zvol/storage/iscsi_0

 size 10G

 }

}

target
iqn.2018-05.com.meetbsd.storage:target1 {

 auth-group ag1

 portal-group pg1

 lun 1 {

 path
/dev/zvol/storage/iscsi_1

 size 10G

 }

}

This config file mainly includes three sections:

Portal-groups

It contains network setting like discovery,
listening IP and port.

Auth-group

It contains authentication method, user, and
password.

Target

It contains portal-group, auth-group and
LUN(logical unit number).

LUN defines path and size of allocation plus
other options.

Since we have two interfaces with 192.168.1.10
and 192.168.2.10 IP addresses and want use
them simultaneously, we need to create a two
portal-group that requires no password to
discover on the client side.

Then, let’s create a two auth-group with
username and password. This authentication
method is CHAP (Challenge-Handshake
Authentication Protocol). CHAP means the
password never in use directly, instead, both
client and server use a challenge message and
one-way hash to verify authentication.

This modular config file lets you separate
network aspects from another, and you can
manage efficiently.

It’s worth noting that the password must be eight
digits at least.

Then, start ctld by:

service ctld start

iSCSI target will listen on port 2360, and
everything will be in order. But if you later change
this config file, then issue the following
command:

28

service ctld reload

iSCSI Mutual Authentication

iSCSI supports two types of authentication:

One-Way CHAP (or simply CHAP), the target
only authenticates the initiator.

Mutual CHAP, the initiator also authenticates the
target.

Mutual authentication, also called two-way
authentication, is a process in which the client
authenticates the server and vice-versa. If some
pretend to be your storage, all of your valuable
data will easily be compromised.

Windows 2016 as iSCSI Initiator

Windows 2016 supports iSCSI and can act as
the iSCSI initiator.

The only items you have to set are the IP of the
iSCSI target (server), your username and
password.

hen you must format the iSCSI disk and create a
partition.

Windows 2016 iSCSI Tuning

The only proven tuning for iSCSI on Windows
2016 that improves performance by about 13%
is Jumbo Frames.

A larger MTU (maximum transmission unit)
typically decreases the amount of CPU
utilization.

29

The Jumbo Frame can carry up to 9000 byte
MTUs, which leads to better iSCSI performance.

Here is how to enable Jumbo Frame on interface
name iSCSI:

First press Window+R and then issue the
following command:

netsh interface ipv4 set sub interface
"iSCSI" mtu=9000 store=persistent

Conclusion

Many people are not sure about choosing
between DAS (Block-Level directly), NAS
(File-Level over the network) and SAN
(Block-Level over the network). Don’t settle for a
storage based on the amount of space only,
rather, the answers to these important questions
should act as a guiding principle:

• What is your storage expansion policy?

• What is your backup policy?

Useful Links

https://www.freebsd.org/doc/handbook/network
-iscsi.html

https://www.server-world.info/en/note?os=Wind
ows_Server_2016&p=iscsi&f=3

Meet the Author

Abdorrahman Homaei has been working as a
software developer since 2000 and has used
FreeBSD for more than ten years. He became
involved with the meetBSD dot ir and performed
serious trainings on FreeBSD. He started his
company (etesal amne sara Tehran) in Feb 2017
and it is based in Iran Silicon Valley.

Full CV: http://in4bsd.com

His company: http://corebox.ir

30

https://www.server-world.info/en/note?os=Windows_Server_2016&p=iscsi&f=3
https://www.server-world.info/en/note?os=Windows_Server_2016&p=iscsi&f=3
https://www.server-world.info/en/note?os=Windows_Server_2016&p=iscsi&f=3
https://www.server-world.info/en/note?os=Windows_Server_2016&p=iscsi&f=3
http://in4bsd.com
http://in4bsd.com
http://corebox.ir
http://corebox.ir

31

Join Us

www.bsdmag.org

http://www.bsdmag.org
http://www.bsdmag.org

Google Compute Engine

In an earlier article, I showed you how to run
FreeBSD on Google Compute Engine, running an
Apache web server with PHP. Now let's see how
to improve its performance with the latest
version of HTTP.

HTTP/2 has significant advantages over earlier
versions. However, it and PHP don't work
together "out of the box" on FreeBSD, and what
appears to be the appropriate fix breaks an
otherwise functioning web server.

Follow my investigation of the mystery, and at
the end, I'll have assembled a working
configuration for you.

Why HTTP/2?

HTTP/2 provides better performance than
HTTP/1.1. The HTTP headers are compressed,
and multiple HTTP requests are sent through a
single TCP connection (called HTTP pipelining or
multiplexing).

32

HTTP/2 and PHP
with Apache on
FreeBSD: Not as
Simple as It Seems

Recall that each TCP connection requires a
3-way handshake to set it up, and another 3-way
handshake to shut it down. Moving everything
through one TCP connection saves a lot of
back-and-forth exchanges to set up and tear
down multiple connections. Mobile clients have
greater latency, and all those additional TCP
connections can slow things down.

Concurrency - using one TCP pipeline for several
sets of data - can be especially helpful with
mobile clients. Some hosting providers claim
that HTTP/2 can cut page load times in half.

Other HTTP/2 features can provide further
performance advantages if the server and client
can take advantage of them. If the server can
anticipate which additional resources are needed
for a given page, server push is the technique of
"pushing" those resources to the client before
the client analyzes the initial content and realizes
that it needs to request them. See the Apache
documentation for details on server push.

From the opposite direction, stream prioritization
is a technique by which the client can prioritize
certain data streams over others. It can request
components like images and CSS and
JavaScript files in an order that speeds page
rendering.

Site speed is a Google search ranking factor. So,
while they don't specifically rank on support for
HTTP/2, its speed improvements will help your
ranking.

How Did We Get HTTP/2?

HTTP appeared, received an initial tweak, and
then stayed the same for almost two decades.
Its design was about as stable as boring old
UDP. Meanwhile, HTTP became the Internet's
most-used application protocol. Then Google
started stirring things up in its quest for web
performance.

HTTP was initially developed in the early 1990s.
Remember Netscape Navigator and NCSA's

Mosaic before that? You very likely don't, but
that's what they were designed for. Version 1.0
was formally defined in 1996 and version 1.1
followed in early 1997. Then things were quiet for
a decade, and it took almost 20 years before
HTTP/2 arrived.

Google designed the SPDY protocol in the early
2010s. It aimed to increase page load speed and
was supported by several browsers.

SPDY evolved into HTTP/2, which was published
as a standard in 2015. Most browsers have
supported HTTP/2 since 2015.

Your server will need support from its shared
libraries. You need a TLS library that supports
the ALPN protocol. That means at least
OpenSSL 1.0.2 (Jan 2015), LibreSSL 2.1.3 (Jan
2015), or GnuTLS 3.2.0 (May 2013). That's no
problem on recent FreeBSD, but someone
locked into older Red Hat or CentOS Linux
distributions may be unable to run HTTP/2. On
FreeBSD, try the following commands. The first
one checks the standard command included in
the base operating system. The second checks
the version installed when you add the libressl or
openssl package. The openssl package provides
a slightly newer version of the binary and shared
libraries, plus a large collection of manual pages.

$ openssl version

$ /usr/local/bin/openssl version

$ gnutls-cli --version

$ pkg info | egrep
'openssl|gnutls|libressl'

HTTP/2 is an alternative to HTTP/1.1 and
HTTP/1.0, not a replacement. It includes a
negotiation mechanism, so the client and server
can use HTTP/1.0, HTTP/1.1, or HTTP/2.

You will find entries for HTTP/1.0 clients in your
log, but you will probably find that most are
automated indexing bots. I was surprised to
learn that many indexing bots run the original

33

protocol. However, I suppose that HTTP/2
doesn't have a big advantage in that specific
situation.

Getting Started

In a previous article, I described how I had
deployed a FreeBSD server in the Google Cloud.
(see "FreeBSD, Google Cloud, and Dual
ECC/RSA", BSD Magazine, November 2017,
https://bsdmag.org/download/openldap-director
y-services-freebsd/)

The server seemed to be working fine, and as far
as serving out the appropriate data, it was. I
didn't notice at first that it wasn't supporting
HTTP/2. Then I read an article listing recent
estimates of the percentage of clients using
HTTP/2. Being curious, I used some simple
grep -c commands to count how many lines in
the Apache log file contain the strings
"HTTP/1.0", "HTTP/1.1", and "HTTP/2". I was
surprised to find no entries for HTTP/2!

After tracking down what seemed to be missing,
I made what seemed to be the appropriate
changes. But now Apache would not start! I fixed
that and then broke something else. After some
investigation, I got everything working. Here's
what I discovered:

The sample httpd.conf file supplied in the
FreeBSD Apache24 package does not
support HTTP/2. It fails to do so because of an
error that is not logged using that configuration
file. Then, what seems to be the obvious solution
prevents Apache from starting. Apache
configuration debugging doesn't make for a
thrilling tale, but there were mysteries to solve.

Follow along with my experiments and
debugging. By the time we reach the end of the
article, I will have it all working!

Enabling HTTP/2 and PHP with
Apache Modules

I had first set out to enable HTTP/2 and PHP. I
need to treat all HTML files as PHP, as I use PHP
to insert a standard footer on every page on the
site, among other tasks. I had added the
following to my other changes near the end of
the httpd.conf file:

[... many lines not shown ...]

Enable HTTP/2

LoadModule http2_module
libexec/apache24/mod_http2.so

Prefer HTTP/2 over TLS, then HTTP/2
without TLS, then HTTP/1.1, finally
HTTP/1.0

Protocols h2 h2c http/1.1

Set up PHP

NOTE: This line will be replaced by the
time we're done,

so keep on reading to see what really
goes here...

LoadModule php7_module
libexec/apache24/libphp7.so

[... many lines not shown ...]

Mysterious Failure to Support HTTP/2

I restarted Apache and used curl to request just
the header (with -I), ignoring the fact that the
certificate is not suitable for host name localhost
(with -k), over HTTP/2 (with --http2). But I did not
get what I expected:

$ curl -I -k --http2 https://localhost/

HTTP/1.1 200 OK

Date: Wed, 30 May 2018 13:51:06 +0000

34

Server: Apache/2.4.29 (FreeBSD)
OpenSSL/1.0.2k-freebsd PHP/7.1.14

Upgrade: h2,h2c

Connection: Upgrade

Last-Modified: Tue, 22 May 2018 09:21:52
+0000

ETag: "fc2-55dbe74d77540"

Accept-Ranges: bytes

Content-Length: 4034

Content-Type: text/html charset=UTF-8

I verified that I had loaded the mod_http2.so
module, and that the server reported no error or
warning when restarting. There was an error but
the server did not log it by default. Here is all I
got:

grep mod_http2.so
/usr/local/etc/apache24/httpd.conf

LoadModule http2_module
libexec/apache24/mod_http2.so

tail /var/www/logs/httpd-error.log

[...]

[Thu May 31 10:02:42.43981 2018]
[mpm_prefork:notice] [pid 6201] AH00163:
Apache/2.4.29 (FreeBSD)
OpenSSL/1.0.2k-freebsd PHP/7.1.14
configured -- resuming normal operations

[Thu May 31 10:02:42.43981] [core:notice]
[pid 6201] AH00094: Command line:
'/usr/local/sbin/httpd -D NOHTTPACCEPT'

This took a while to track down. Eventually I
added a directive to httpd.conf for some logging
from the http2 module:

[... many lines not shown ...]

Enable HTTP/2

LoadModule http2_module
libexec/apache24/mod_http2.so

Protocols h2 h2c http/1.1

<IfModule http2_module>

 LogLevel http2:info

</IfModule>

Set up PHP

LoadModule php7_module
libexec/apache24/libphp7.so

[... many lines not shown ...]

Then I restarted the server and looked at the end
of the error log. There had been a problem, but
without the elevated logging Apache did not
report it. See the error code AH10034 below.

/usr/local/etc/rc.d/apache24 restart

Performing sanity check on apache24
configuration:

Syntax OK

Stopping apache24.

Waiting for PIDS: 7138.

Performing sanity check on apache24
configuration:

Syntax OK

Starting apache24.

tail /var/www/logs/httpd-error.log

[...]

[Thu May 31 10:47:33.000130 2018]
[mpm_prefork:notice] [pid 6956] AH00169:
caught SIGTERM, shutting down

[Thu May 31 10:47:33.002498 2018]
[http2:info] [pid 7138] AH03090: mod_http2
(v1.10.12,

35

feats=CHPRIO+SHA256+INVHD+DWINS, nghttp2
1.29.0), initializing...

[Thu May 31 10:47:33.011375 2018]
[http2:warn] [pid 7138] AH10034: The mpm
module (prefork.c) is not supported by
mod_http2. The mpm determines how things
are processed in your server. HTTP/2 has
more demands in this regard and the
currently selected mpm will just not do.
This is an advisory warning. Your server
will continue to work, but the HTTP/2
protocol will be inactive.

[Thu May 31 10:47:33.217357]
[mpm_prefork:notice] [pid 7138] AH00163:
Apache/2.4.29 (FreeBSD)
OpenSSL/1.0.2k-freebsd PHP/7.1.14
configured -- resuming normal operations

[Thu May 31 10:47:33.293589] [core:notice]
[pid 7138] AH00094: Command line:
'/usr/local/sbin/httpd -D NOHTTPACCEPT'

Apache MultiProcessing Modules

Apache provides a variety of MPMs or
MultiProcessing Modules. In general, one master
or mother process running as root is started by
the apache24 script. The privileged mother
process opens the privileged TCP ports 80 and
443. It then starts a number of child processes.
The child processes inherit the open ports and
then call setuid() to change their user identity to
the relatively unprivileged www user. Then they
do the actual work of serving out data.

There are multiple MPMs to choose from. They
work in slightly different ways and offer different
advantages.

I had started with a copy of the default
httpd.conf.sample and so the server was using
the mod_mpm_prefork.so module. But that is not
compatible with the mod_http2.so module. The
server starts and provides all functionality,
except it will not use HTTP/2.

The prefork module implements a non-threaded
pre-forking server. A single control process

launches child processes which listen for
connections and serve them. It tries to always
maintain a few idle server processes, so clients
do not need to wait for a new child server
process to be forked.

The worker module implements a hybrid
multi-process multi-threaded server. It can serve
a large number of requests while using fewer
system resources than the prefork module would
require. A single control process launches child
processes. Each child process creates a fixed
number of server threads, plus a listener thread
that listens for connections and passes each one
to a server thread. Again, it always tries to
maintain a pool of idle server threads, so clients
do not need to wait for new threads or processes
to be created.

The event module was based on the worker
module, and it was created for Apache 2.4
because Apache 2.2 was significantly slower
than Nginx. It uses several processes and
several threads per process in an asynchronous
event-based loop. This gives performance equal
to or slightly better than event-based web
servers.

Yes, people are working on other experimental
MPMs including Threadpool, Leader, and
Perchild. But with stock Apache 2.4, your
choices are prefork, worker, and event.

I enabled the mod_mpm_event.so module, as
that should provide the best performance. Here's
what I put in httpd.conf:

[... many lines not shown ...]

LoadModule mpm_event_module
libexec/apache24/mod_mpm_event.so

#LoadModule mpm_prefork_module
libexec/apache24/mod_mpm_prefork.so

#LoadModule mpm_worker_module
libexec/apache24/mod_mpm_worker.so

[... many lines not shown ...]

36

Now Apache would not start, because the
mod_php module is not compiled to be
thread-safe:

/usr/local/etc/rc.d/apache24 restart

Performing sanity check on apache24
configuration:

[Thu May 31 10:56:50.293589 2018]
[php7:crit] [pid 7604:tid 34397577216]
Apache is running a threaded MPM, but your
PHP Module is not compiled to be
threadsafe. You need to recompile PHP.

AH00013: Pre-configuration failed

I wanted the higher performance of HTTP/2 and
multi-threaded web server processes, but I did
not want the added maintenance work of
compiling and installing my own PHP module. I
wanted to use the OS packages so that I would
get PHP module updates automatically when
they became available.

The solution

I want to use the event multiprocessing module,
so I commented out the line loading libphp7.so.

I added package php72. It includes php-fpm, the
PHP FastCGI Process Manager. It runs as a
daemon, listening on a TCP socket for CGI
requests (TCP port 9000 on localhost only by
default).

Next, I added a line to /etc/rc.conf

php_fpm_enable=YES

I started php-fpm and verified that it is listening.
It uses the same model of starting as root and
spawning multiple unprivileged workers.

/usr/local/etc/rc.d/php-fpm start

Performing sanity check on php-fpm
configuration:

[14-Feb-2018 15:59:00] NOTICE:
configuration file

/usr/local/etc/php-fpm.conf test is
successful

Starting php_fpm.

lsof -i | egrep 'PID|php'

COMMAND PID USER FD TYPE
DEVICE SIZE/OFF NODE NAME

php-fpm 40778 www 0u IPv4
0xfffff800100f9410 0t0 TCP
localhost:9000 (LISTEN)

php-fpm 63636 www 0u IPv4
0xfffff800100f9410 0t0 TCP
localhost:9000 (LISTEN)

php-fpm 64754 www 0u IPv4
0xfffff800100f9410 0t0 TCP
localhost:9000 (LISTEN)

php-fpm 91117 root 7u IPv4
0xfffff800100f9410 0t0 TCP
localhost:9000 (LISTEN)

I need to make a few more changes, telling the
server to use Index.html as the default file for a
directory, and to handle all HTML files with PHP.

Use Index.html (and not index.* or
*.htm)

An index file is used when the client requests a
directory. For example, http://cromwell-intl.com/
will be treated as a request for the index file in
the root directory of the website. This requires
the mod_dir module. Apache should load that
module by default, but let's check.

Index.html is my site's standard index file name,
versus Apache's default lower-case index.html.
Here's what I changed in httpd.conf.

[... many lines not shown ...]

LoadModule dir_module
libexec/apache24/mod_dir.so

[... many lines not shown ...]

37

DirectoryIndex: sets the file that
Apache will serve if a directory

is requested.

#

<IfModule dir_module>

 ## DirectoryIndex index.html

 DirectoryIndex Index.html

</IfModule>

[... many lines not shown ...]

Treat All HTML Files As PHP

All my pages use PHP to include standard
headers and footers, to create microdata for
search engine and social media indexing, and to
load Google AdSense code blocks. Every page
needs PHP. However, I have always named the
files "*.html". So, all HTML files must be
treated as PHP.

This is a UNIX-family operating system, where
filename extensions don't matter. Until, of
course, they do. The php-fpm daemon cares
about file name extensions!

Edit /usr/local/etc/php-fpm.d/www.conf to tell it
to accept files named both *.php and *.html.
Without that, passing it a file named *.html
results in a very simple page saying "Access
denied".

[... many lines not shown ...]

; Limits the extensions of the main script
FPM will allow to parse. This can

; prevent configuration mistakes on the
web server side. You should only limit

; FPM to .php extensions to prevent
malicious users to use other extensions to

; execute php code.

; Note: set an empty value to allow all
extensions.

; Default Value: .php

;security.limit_extensions = .php .php3
.php4 .php5 .php7

security.limit_extensions = .php .html

[... many lines not shown ...]

Now I can tell Apache to pass all files named
*.html to the PHP proxy. Putting all of this
together, here are the changes and additions to
httpd.conf:

[... many lines not shown ...]

LoadModule dir_module
libexec/apache24/mod_dir.so

[... many lines not shown ...]

LoadModule mpm_event_module
libexec/apache24/mod_mpm_event.so

#LoadModule mpm_prefork_module
libexec/apache24/mod_mpm_prefork.so

#LoadModule mpm_worker_module
libexec/apache24/mod_mpm_worker.so

[... many lines not shown ...]

DirectoryIndex: sets the file that
Apache will serve if a directory

is requested.

#

<IfModule dir_module>

38

 ## DirectoryIndex index.html

 DirectoryIndex Index.html

</IfModule>

[... many lines not shown ...]

Enable HTTP/2

LoadModule http2_module
libexec/apache24/mod_http2.so

Prefer HTTP/2 over TLS, then HTTP/2
without TLS, then HTTP/1.1, and finally
HTTP/1.0

Protocols h2 h2c http/1.1

<IfModule http2_module>

 LogLevel http2:info

</IfModule>

Set up PHP

LoadModule proxy_module
libexec/apache24/mod_proxy.so

LoadModule proxy_http2_module
libexec/apache24/mod_proxy_http2.so

LoadModule proxy_fcgi_module
libexec/apache24/mod_proxy_fcgi.so

<FilesMatch \.html$>

 SetHandler
"proxy:fcgi://127.0.0.1:9000"

</FilesMatch>

[... many lines not shown ...]

The above will work as long as the clients don't
ask for files that don't exist. In that case, the
client will get a simple "File not found" page, and

a "Primary script unknown" entry appears in the
error log. Add the following to the end of your
.htaccess file to solve that problem. Don't
duplicate the RewriteEngine line if it's already in
the file:

Do NOT duplicate the following line if
it

already exists earlier in the file.

RewriteEngine on

If the client asks for a specific
non-existent *.html file, rewrite it

so it isn't passed to the PHP engine
causing a "Primary script unknown"

log entry and a plain "File not found"
page.

RewriteCond %{REQUEST_FILENAME} \.html$

RewriteCond
%{DOCUMENT_ROOT}/%{REQUEST_URI} !-f

RewriteRule (.*) - [H=text/html]

Restart apache24 and test it. This needs to
include testing with requests for nonexistent
directories and files.

You will find suggestions to use ProxyPassMatch
instead of SetHandler in the above use of the
PHP proxy. That does not work with .htaccess
redirection, and you’ll get a simple "File not
found" error for cases where it should have been
redirected.

Now my PHP inclusion works, so all my pages
get the standard header with automatically
generated social media microdata, the standard
footer, and the Google AdSense ads. The pages
now look as they should! And, they should be
served more efficiently with HTTP/2.

Testing HTTP/2

Let's make sure that HTTP/2 is working:

39

$ curl -I -k --http2
https://cromwell-intl.com/

HTTP/2 200 OK

Date: Thu, 31 May 2018 12:11:06 +0000

Server: Apache/2.4.29 (FreeBSD)
OpenSSL/1.0.2k-freebsd PHP/7.1.14

Upgrade: h2,h2c

Connection: Upgrade

Last-Modified: Tue, 22 May 2018 09:21:52
+0000

ETag: "fc2-55dbe74d77540"

Accept-Ranges: bytes

Content-Length: 4034

Content-Type: text/html charset=UTF-8

That looks good!

Final Cleanup

Be careful! If you have installed the mod_php71
package, then a package update will run a
post-installation script that re-inserts the
troublesome libphp7.so line in your configuration
file automatically!

Remove the mod_php71 package to be safe. It
only contains the module and some license files:

$ pkg info -l mod_php71

mod_php71-7.1.17:

/usr/local/libexec/apache24/libphp7.so

/usr/local/share/licenses/mod_php71-7.1.17
/LICENSE

/usr/local/share/licenses/mod_php71-7.1.17
/PHP301

/usr/local/share/licenses/mod_php71-7.1.17
/catalog.mk

Meet the Author

Bob Cromwell
has been
using
OpenBSD
since, well,
not sure how
long… Some
time in the
late 1990s.
He’s used
Linux since
you

downloaded 40+ floppy images, some time
around 1993-1994. Before that he had used
UNIX, SunOS and forms of BSD, at Purdue since
the mid 1980s. He got a BSEE at Purdue back
then, worked at the university, grad school, Ph.D.
in electrical and computer engineering, has done
consulting since 1992. He’s taught courses for
Learning Tree International since the mid 1900s,
and has written courses for them since the late
1990s. He's a more recent convert to FreeBSD.

40

41

Soon Online ... www.bsdmag.org

http://www.bsdmag.org
http://www.bsdmag.org

Self Exposure

Redundant Firewalls with
OpenBSD, CARP and pfsync

Daniele Mazzocchio 
Applies to: OpenBSD 6.3 
Last update: May 29, 2018

http://www.kernel-panic.it/openbsd/carp/

 
Table of contents 
1. Introduction 
2. Network layout 
3. Base configuration 
4. The CARP protocol 
4.1 Configuration parameters 
4.1.1 The demotion counter 
4.1.2 Load balancing 
4.2 Parameters configuration 
4.2.1 Active/standby configuration 
4.2.2 Active/active configuration 
5. The pfsync protocol 
6. PF rules 
7. Appendix 
7.1 References 
7.2 Bibliography

42

http://www.kernel-panic.it/openbsd/carp/
http://www.kernel-panic.it/openbsd/carp/

1. Introduction

Firewalls are among the most critical
components in network infrastructure, since their
failure may cause entire groups of machines to
go offline. The damage may range from the
public (web, mail, DNS, etc.) servers to become
unreachable from the outside world up to being
unable to surf this website!

Using firewall clusters can dramatically reduce
these risks, making the failure of a firewall
completely transparent to users. Also,
maintenance (patching, upgrading, rebooting,
etc.) becomes much easier and faster when
relying on a backup machine, thus indirectly
increasing systems security and reliability.

On the other hand, it's true that redundancy
increases hardware costs and can't solve every
problem, like transparent transfer of certain
protocols (e.g., SSH or IRC) between systems or
synchronizing data between clustered machines
(as a matter of fact, we will rely on two different
protocols for failover and synchronization).

The tools we will use to build our failover cluster
are:

OpenBSD

it is largely considered one of the most secure
OSes around, with only two remote holes in the
default install, in a heck of a long time!;

Packet Filter (PF)

OpenBSD's system for filtering TCP/IP traffic
and doing Network Address Translation;

CARP (Common Address Redundancy Protocol)

the protocol that achieves system redundancy,
by having multiple computers creating a single,
virtual network interface between them;

pfsync

the protocol that allows PF state tables to be
synchronized between multiple firewalls.

A good knowledge of OpenBSD and PF is
assumed, since we won't cover topics like
pfctl(8) and pf.conf(5) syntax. Anyway, the
appendix contains some useful links for more on
these topics.

2. Network layout

First, let's take a look at the environment in
which our firewall clusters will operate. It's a very
simple and "classic" network, made up of:

a DMZ (172.16.240.0/24), containing the publicly
accessible machines (e.g. web and mail servers)
and the intrusion detection sensors;

a LAN (172.16.0.0/24), containing clients and
servers not accessible from the public Internet
(file server, DHCP server, internal DNS server,
etc.);

a router, in a small subnet (172.16.250.0/24), to
connect the network to the Internet.

This environment requires that we set up two
firewall clusters: the first separating the DMZ
from the Internet (we won't take into account any
router filtering); the second between the LAN and
the DMZ. The network looks roughly like this:

43

http://www.kernel-panic.it/openbsd/carp/carp4.html
http://www.kernel-panic.it/openbsd/carp/carp4.html
http://www.kernel-panic.it/openbsd/carp/carp5.html
http://www.kernel-panic.it/openbsd/carp/carp5.html
http://www.openbsd.org/
http://www.openbsd.org/
http://www.openbsd.org/
http://www.openbsd.org/
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4
https://man.openbsd.org/carp
https://man.openbsd.org/carp
https://man.openbsd.org/pfsync
https://man.openbsd.org/pfsync
https://man.openbsd.org/pfctl
https://man.openbsd.org/pfctl
https://man.openbsd.org/pf.conf
https://man.openbsd.org/pf.conf
http://www.kernel-panic.it/openbsd/carp/carp7.html
http://www.kernel-panic.it/openbsd/carp/carp7.html

The great advantage of this topology is that it
needs two firewall clusters, thus allowing us to
look over two slightly different cluster
configurations. Jokes apart, these are some of
its major benefits:

in case of a firewall compromise, the LAN is
protected by an additional layer of filtering
(though it would be better to use different firewall
platforms, to prevent attackers from
compromising the internal firewalls with the
same technique);

a single (though clustered) firewall, filtering both
LAN and DMZ traffic, is a single point of failure;

on each firewall, rules apply only to LAN or DMZ
traffic, thus making PF rulesets cleaner and
easier to maintain;

but there are also a few drawbacks:

besides its traffic, the DMZ must support the
traffic load from the internal network to the
Internet;

double-filtering LAN traffic increases security but
(slightly) affects performances;

the cost of additional hardware may not be
irrelevant.

3. Base configuration

Let's take a brief look at the base system
configuration, which applies to all of our firewalls.

We won't go through the installation of the
operating system, which is very well
documented on the OpenBSD web site. The only
note is that you should install only the bare
minimum, to prevent firewall security and
reliability from being compromised by
unnecessary software. Therefore, during
installation, you only need to select file sets
marked as Required by the documentation, i.e.:

BSD, the kernel;

baseXX.tgz, the base system;

There should be no need to install the compiler
(compXX.tgz), also to avoid providing such a
useful tool to possible intruders (see [PUIS]).

After the first reboot, we can start doing some
basic configuration; by default, OpenBSD
doesn't start unnecessary daemons, though I
guess we can stop sndiod(8) on a firewall. It's
also a good practice to edit the /etc/motd file to
give as few information as possible about the
system and to warn users, whether legitimate or
not, that all access is being logged and that any
unauthorized access will be prosecuted (see
[PUIS]).

You should already have configured the network
during installation; anyway, if you need to make
some changes, these are the main files to edit:

44

http://www.openbsd.org/faq/faq4.html
http://www.openbsd.org/faq/faq4.html
http://www.openbsd.org/faq/faq4.html#FilesNeeded
http://www.openbsd.org/faq/faq4.html#FilesNeeded
http://oreilly.com/catalog/9780596003234
http://oreilly.com/catalog/9780596003234
https://man.openbsd.org/sndiod
https://man.openbsd.org/sndiod
http://oreilly.com/catalog/9780596003234
http://oreilly.com/catalog/9780596003234

/etc/hostname.if(5)

containing information regarding the
configuration of each network interface (address,
netmask, etc.);

/etc/mygate(5)

containing the address of the gateway host;

/etc/myname(5)

containing the symbolic hostname (FQDN) of the
machine;

/etc/resolv.conf(5)

containing the resolver configuration settings
(name servers, local domain name, etc.).

Considering the large amount of DNS-based
attacks, it is also preferable, especially on
firewalls, not to rely on DNS to resolve names
and addresses of the most critical systems, but
rather inserting them into the /etc/hosts(5) file; to
make sure this file has a higher priority than
DNS, just make sure that /etc/resolv.conf(5)
contains the line:

/etc/resolv.conf

lookup file bind

Packet Filter is enabled by default, and loads its
rules from the /etc/pf.conf(5) file. You may also
want to change the pflogd(8) flags in the variable
pflogd_flags. Lastly, don't forget to enable IP and
IPv6 forwarding by issuing the command:

sysctl net.inet.ip.forwarding=1  
net.inet.ip.forwarding: 0 -> 1  
sysctl net.inet.ip6.forwarding=1  
net.inet.ip6.forwarding: 0 -> 1  
 

and to add the following lines to
/etc/sysctl.conf(5) to re-enable forwarding after
reboot:

/etc/sysctl.conf

net.inet.ip.forwarding=1  
net.inet.ip6.forwarding=1

4. The CARP protocol

CARP (Common Address Redundancy Protocol)
is the protocol that achieves system redundancy
by sharing an IP address across a group of hosts
on the same network segment (redundancy
group). When one of these hosts becomes
unavailable, another host in the redundancy
group takes over, with no loss of network traffic.
CARP also allows a degree of load sharing
between systems.

Although creating redundant firewalls is one of
its most common uses, CARP isn't a
firewall-specific protocol. It can be used to
ensure service continuity and/or load sharing to
a number of network services.

Anecdotally, the OpenBSD team wanted to
produce a free implementation of the IETF
standard protocols, VRRP (Virtual Router
Redundancy Protocol), defined in [RFC3768],
and HSRP (Hot Standby Router Protocol),
defined in [RFC2281]. However, Cisco claiming
patent rights on it firmly informed the OpenBSD
community that Cisco would defend its patents
for VRRP implementation (see [CARP] for more
details). This move forced the OpenBSD
developers to create a new, competing protocol
designed to be fundamentally different from
VRRP. And the funny thing is, putting CARP
hosts on a network with Cisco VRRP hosts made
Cisco routers crash [LUCAS].

CARP is a multicast protocol, grouping several
physical computers together under one or more
virtual addresses. Of these, one system is the
master and responds to all packets destined for
the group; the other systems (backups) just
stand by, waiting for any problem to take its
place (as it happens between co-workers).

45

https://man.openbsd.org/hostname.if
https://man.openbsd.org/hostname.if
https://man.openbsd.org/mygate
https://man.openbsd.org/mygate
https://man.openbsd.org/myname
https://man.openbsd.org/myname
https://man.openbsd.org/resolv.conf
https://man.openbsd.org/resolv.conf
https://man.openbsd.org/hosts
https://man.openbsd.org/hosts
https://man.openbsd.org/resolv.conf
https://man.openbsd.org/resolv.conf
https://man.openbsd.org/pf.conf
https://man.openbsd.org/pf.conf
https://man.openbsd.org/pflogd
https://man.openbsd.org/pflogd
https://man.openbsd.org/sysctl.conf
https://man.openbsd.org/sysctl.conf
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2
http://www.faqs.org/rfcs/rfc3768.html
http://www.faqs.org/rfcs/rfc3768.html
http://www.faqs.org/rfcs/rfc2281.html
http://www.faqs.org/rfcs/rfc2281.html
http://www.openbsd.org/lyrics.html#35
http://www.openbsd.org/lyrics.html#35
http://blather.michaelwlucas.com/archives/1866
http://blather.michaelwlucas.com/archives/1866

At configurable intervals, the master advertises
its operation on IP protocol number 112. If the
master goes offline, the other hosts in the
redundancy group begin to advertise. The host
that can advertise most frequently becomes the
new master. When the main system comes back
up, it becomes a backup host by default,
although it can be configured to try to become
master again.

As you can see, CARP only creates and
manages the virtual network interface. It's up to
the system administrator to synchronize data
between applications, using pfsync(4) (which
we'll discuss in the next chapter), rsync or
whatever protocol is appropriate for the specific
application.

4.1 Configuration parameters

CARP configuration is done via the sysctl(8) and
ifconfig(8) commands. There are three relevant
sysctl(2) variables:

net.inet.carp.allow

defines whether the host handles CARP packets
or not. It is enabled by default;

net.inet.carp.log

defines whether to log CARP messages or not. It
may be a value between 0 and 7, corresponding
to the syslog(3) priorities, and defaults to 2 (i.e.
only CARP state changes are logged);

net.inet.carp.preempt

if set to 0 (default), the host won't try to become
master when it receives CARP advertisements
from another master. Otherwise, it will try to
become master if it can advertise more
frequently than the current master. This option
also enables failing over all interfaces if one
interface goes down. In fact, if one physical
CARP-enabled interface goes down, CARP will
increase the demotion counter by 1(see below)
for all groups that the interface belongs to, thus

allowing the election of new masters on all
subnets.

The syntax for configuring CARP with ifconfig(8)
is:

 ifconfig carpN create  
 
 ifconfig carpN [advbase n] [advskew n]

[balancing mode] \  
 [carpnodes
vhid:advskew,vhid:advskew,...] [carpdev

iface] \  
 [[-]carppeer peer_address] [pass

passphrase] [state state] [vhid host-id]  

carpN

the name of the carp(4) virtual interface.

advbase, advskew

these values determine the interval between two
consecutive CARP advertisements. This interval
(in seconds) is given by the formula (advbase +
(advskew / 255)); increasing advbase will
decrease network traffic, but increase the delay
in electing the new master. Small advskew
values allow a host to advertise more frequently,
increasing its probability to become master. The
values of advbase and advskew must be in the
range of 0 to 254 and default to 1 and 0
respectively;

balancing

sets the load balancing mode (which will be
discussed later); valid modes are ip, ip-stealth
and ip-unicast;

carpnodes

a comma-separated list of vhid:advskew pairs
that actually define how the load should be
shared among the configured carp nodes (see
below for further details);

carpdev

46

https://man.openbsd.org/pfsync
https://man.openbsd.org/pfsync
http://www.kernel-panic.it/openbsd/carp/carp5.html
http://www.kernel-panic.it/openbsd/carp/carp5.html
http://rsync.samba.org/
http://rsync.samba.org/
https://man.openbsd.org/man8/sysctl.8
https://man.openbsd.org/man8/sysctl.8
https://man.openbsd.org/ifconfig
https://man.openbsd.org/ifconfig
https://man.openbsd.org/man2/sysctl.2
https://man.openbsd.org/man2/sysctl.2
https://man.openbsd.org/syslog
https://man.openbsd.org/syslog
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.1
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.1
https://man.openbsd.org/ifconfig
https://man.openbsd.org/ifconfig
https://man.openbsd.org/carp
https://man.openbsd.org/carp
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1.2

specifies the physical interface that belongs to
this redundancy group. By default, CARP uses
the physical interface on the same subnet as the
virtual interface;

[-]carppeer

allows you to specify the IP address of the other
CARP peer(s), instead of using the default
multicast group; this allows the use of ipsec(4) to
protect carp(4) traffic;

pass

the authentication password to use when talking
to other CARP-enabled hosts in the redundancy
group. This must be the same on all members of
the group;

state

force a carp(4) interface into a specific state (init,
backup or master);

vhid

the Virtual Host ID. This is a unique number
(between 1 and 255) that is used to identify the
redundancy group to the other nodes on the
network.

4.1.1 The demotion counter

Besides basic configuration, the ifconfig(8)
command also allows you to tweak the CARP
demotion counter, which is a measure of how
"ready" a host is to become master of a CARP
group [CARPFAQ] (the higher the counter, the
less ready the host). Let's see it in more detail.

CARP interfaces are divided into groups (by
default all carp(4) interfaces are members of the
"carp" interface group), and each group is
assigned a demotion counter, whose value can
be viewed by running the following command:

$ ifconfig -g carp 
carp: carp demote count 0 

The demotion counter comes in handy mainly
when:

You want to momentarily prevent a host from
becoming master. For instance, at boot time, the
rc(8) script increases the demotion counter by
128 before starting the network, and decreases it
by the same amount once all interfaces have
been initialized and all network daemons have
been started (the demotion counter can't be set
to an absolute value, but only increased or
decreased by a certain amount):

/etc/rc

ifconfig -g carp carpdemote 128  
[...]  
ifconfig -g carp -carpdemote 128

You want to gracefully failover only a limited
number of a host's carp(4) interfaces (not all of
them, as it happens when an interface goes
down and preempt is enabled). In the following
example, we will failover the carp1 and carp2
interfaces and leave the state of the others
unchanged:

ifconfig carp1 group morituri  
ifconfig carp2 group morituri  
ifconfig morituri  
carp1:
flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MU

LTICAST> mtu 1500  
 carp: MASTER carpdev sis0 vhid 1

advbase 1 advskew 100  
 groups: carp morituri  
 inet 1.2.3.4 netmask 0xffffff00

broadcast 1.2.3.255  
carp2:
flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MU

LTICAST> mtu 1500  
 carp: MASTER carpdev sis1 vhid 2

advbase 1 advskew 100  
 groups: carp morituri  
 inet 2.3.4.5 netmask 0xffffff00

broadcast 2.3.4.255  
ifconfig -g morituri  
morituri: carp demote count 0  
ifconfig -g morituri carpdemote 50  

47

https://man.openbsd.org/ipsec
https://man.openbsd.org/ipsec
https://man.openbsd.org/carp
https://man.openbsd.org/carp
https://man.openbsd.org/carp
https://man.openbsd.org/carp
https://man.openbsd.org/ifconfig
https://man.openbsd.org/ifconfig
http://www.openbsd.org/faq/pf/carp.html
http://www.openbsd.org/faq/pf/carp.html
https://man.openbsd.org/carp
https://man.openbsd.org/carp
https://man.openbsd.org/rc
https://man.openbsd.org/rc
https://man.openbsd.org/carp
https://man.openbsd.org/carp

ifconfig -g morituri  
morituri: carp demote count 50

For further details on the CARP demotion
counter, please refer to [CARPFAQ].

4.1.2 Load balancing

CARP allows you to load balance incoming
network traffic among a set of CARP-enabled
hosts. First, you need to create a load balancing
group by configuring, on each balanced
carp(4)interface, as many VHIDs as hosts in the
balancing group. The advskew on each VHID will
be configured so that each host will be the
master on a separate VHID (see below for a
practical example).

Since balancing requires that all CARP hosts
receive network traffic destined to the CARP
address, the virtual interface will use a multicast
MAC address, forcing the switch to send
incoming traffic to all nodes in the redundancy
group.

CARP uses the hash of the source and
destination addresses of the IP packet to
determine which VHID (and therefore which host)
should accept the packet; balancing can be
enabled using ifconfig(8), by setting the
balancing option to "ip". For example:

ifconfig carp0 balancing ip carpnodes
1:0,2:100

Alternatively, you can set the balancing option to
"ip-stealth" (stealth mode), to prevent hosts from
sending packets with their virtual MAC address
as source; this will prevent the switch from
learning the virtual MAC address, forcing it to
flood the traffic to all its ports. Last, if you're
using a hub or a switch that supports some kind
of monitoring mode, you can set balancing to
"ip-unicast".

4.2 Parameters configuration

Now it's time to configure CARP on our firewalls.
To examine two slightly different CARP

configurations, we will set up the two internal
firewalls (Mickey and Minnie, between LAN and
DMZ) in active/standby mode, with only one
system filtering the whole network traffic, and the
other one acting as a hot spare. The two external
firewalls (Donald and Daisy, separating the DMZ
from the internet), instead, will be in
active/standby mode, sharing the traffic load.

So let's recap the firewalls addresses, as we
have seen them in the network diagram:

4.2.1 Active/standby configuration

Let's start with Mickey and Minnie: first, we need
to create the carp* devices and configure them
with ifconfig(8):

mickey# ifconfig carp0 172.16.0.202/24

vhid 1 pass password1 advbase 1 advskew 0  
mickey# ifconfig carp1 172.16.240.202/24

vhid 2 pass password2 advbase 1 advskew 0  

minnie# ifconfig carp0 172.16.0.202/24
vhid 1 pass password1 advbase 1 advskew

100  
minnie# ifconfig carp1 172.16.240.202/24
vhid 2 pass password2 advbase 1 advskew
100

We have just created the interfaces, assigned
them an IP address, a virtual host ID (1 on the

48

Mickey Minnie Virtual address

LAN 172.16.0.200 172.16.0.201 172.16.0.202

DMZ 172.16.240.200 172.16.240.201 172.16.240.202

pfsync 192.168.2.200 192.168.2.201

Donald Daisy Virtual address

DMZ 172.16.240.100 172.16.240.101 172.16.240.102

Internet 72.16.250.100 172.16.250.101 172.16.250.102

pfsync 192.168.1.100 192.168.1.101

http://openbsd.org/faq/pf/carp.html#forcefail
http://openbsd.org/faq/pf/carp.html#forcefail
https://man.openbsd.org/carp
https://man.openbsd.org/carp
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.2.2
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.2.2
https://man.openbsd.org/ifconfig
https://man.openbsd.org/ifconfig
http://www.kernel-panic.it/openbsd/carp/carp2.html#net
http://www.kernel-panic.it/openbsd/carp/carp2.html#net
https://man.openbsd.org/ifconfig
https://man.openbsd.org/ifconfig

LAN, 2 on the DMZ), and a password (probably
not the most secure) for authentication. We also
decided that, whenever possible, Mickey will be
the master; this is done by giving Minnie a higher
advskew value (100), thus making the interval
between its advertisements (1 + 100 / 255)
higher than the interval between Mickey's
advertisements (1 + 0 / 255). Additionally, as
we've seen above, the host that's able to
advertise most frequently becomes master.

Furthermore, by setting net.inet.carp.preempt to
"1" on Mickey, we ensure that Mickey will always
try to become the master:

mickey# sysctl net.inet.carp.preempt=1  
net.inet.carp.preempt: 0 -> 1  

To make these settings permanent after reboot,
we need to edit the /etc/hostname.carp* and
/etc/sysctl.conf files on Mickey:

/etc/hostname.carp0

inet 172.16.0.202 255.255.255.0
172.16.0.255 vhid 1 pass password1 advbase

1 advskew 0  

/etc/hostname.carp1

inet 172.16.240.202 255.255.255.0
172.16.240.255 vhid 2 pass password2
advbase 1 advskew 0  

/etc/sysctl.conf

[...]  
net.inet.carp.preempt=1  

and on Minnie:

/etc/hostname.carp0

inet 172.16.0.202 255.255.255.0
172.16.0.255 vhid 1 pass password1 advbase

1 advskew 100  

/etc/hostname.carp1

inet 172.16.240.202 255.255.255.0
172.16.240.255 vhid 2 pass password2

advbase 1 advskew 100  

Note: to make the adoption of CARP easier on
pre-existing networks, CARP allows using the
physical address of a host as the virtual address
of the whole redundancy group.

4.2.2 Active/active configuration

Now let's get on to Donald and Daisy, and start
by configuring their DMZ interfaces. As before,
we will create the carp0 device on each machine,
but this time, to enable load balancing, we will
use the carpnodes option to assign two different
Virtual Host IDs to the interface (VHIDs 3 and 4).

On VHID 3, we will set the advskew of Donald
and Daisy to 0 and 100 respectively: this will
ensure that Donald becomes master for that
VHID; on VHID 4, we will do the opposite, by
setting the advskew of Donald and Daisy to 100
and 0 respectively to force Daisy to become
master for VHID 4:

donald# ifconfig carp0 172.16.240.102/24

balancing ip carpnodes 3:0,4:100 \  
> pass password3  
donald# sysctl net.inet.carp.preempt=1  
net.inet.carp.preempt: 0 -> 1  

daisy# ifconfig carp0 172.16.240.102/24

balancing ip carpnodes 3:100,4:0 \  
> pass password3  
daisy# sysctl net.inet.carp.preempt=1  
net.inet.carp.preempt: 0 -> 1

We now have two redundancy groups with the
same IP address, but each with a different
master:

donald# ifconfig carp0  
carp0:
flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MU

LTICAST> mtu 1500  

49

http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1
http://www.kernel-panic.it/openbsd/carp/carp4.html#carp-4.1

 lladdr 01:00:5e:00:01:01  
 carp: carpdev rl1 advbase 1

balancing ip  
 state MASTER vhid 3

advskew 0  
 state BACKUP vhid 4

advskew 100  
 groups: carp  
 inet 172.16.240.102 netmask

0xffffff00 broadcast 172.16.240.255  
 inet6
fe80::2c0:a8ff:fe8e:b112%carp0 prefixlen

64 scopeid 0x5  

daisy# ifconfig carp0  
carp0:
flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MU

LTICAST> mtu 1500  
 lladdr 01:00:5e:00:01:01  
 carp: carpdev rl1 advbase 1

balancing ip  
 state BACKUP vhid 3

advskew 100  
 state MASTER vhid 4

advskew 0  
 groups: carp  
 inet 172.16.240.102 netmask

0xffffff00 broadcast 172.16.240.255  
 inet6
fe80::219:d2ff:fe02:6469%carp0 prefixlen

64 scopeid 0x5  

To make these settings permanent across
reboots, we need to edit the startup files on
Donald:

/etc/hostname.carp0

inet 172.16.240.102 255.255.255.0
172.16.240.255 balancing ip carpnodes

3:0,4:100 pass password3  

/etc/sysctl.conf

[...]  
net.inet.carp.preempt=1

and Daisy:

/etc/hostname.carp0

inet 172.16.240.102 255.255.255.0
172.16.240.255 balancing ip carpnodes

3:100,4:0 pass password3  

/etc/sysctl.conf

[...]  
net.inet.carp.preempt=1

Now we have to do the same on the external
network interfaces, with another two Virtual Host
IDs (VHIDs 5 and 6):

donald# ifconfig carp1 172.16.250.102/24

balancing ip carpnodes 5:0,6:100 \  
> pass password5  

daisy# ifconfig carp1 172.16.250.102/24

balancing ip carpnodes 5:100,6:0 \  
> pass password5

and edit the startup files on Donald:

/etc/hostname.carp1

inet 172.16.250.102 255.255.255.0
172.16.250.255 balancing ip carpnodes
5:0,6:100 pass password5

and Daisy:

/etc/hostname.carp1

inet 172.16.250.102 255.255.255.0
172.16.250.255 balancing ip carpnodes
5:100,6:0 pass password5

Though the above configuration involves only a
couple of machines, it can be easily extended to
up to 32 hosts. One last note: load sharing won't
probably achieve a perfect 50/50 distribution
between the two machines, since CARP uses a
hash of the source and destination IP addresses
to determine which system should accept a
packet, not the actual load.

50

5. The pfsync protocol

Pfsync is the protocol used by Packet Filter to
manage and update state tables, which allow for
stateful inspection and NAT. By default, state
change messages are sent out on the
synchronization interface using IP multicast
packets. The protocol is IP protocol 240 and the
multicast group used is 224.0.0.240. We will use
it to synchronize state tables among firewalls of
the same redundancy group and, in the event of
a failover, allow network traffic to flow
uninterrupted through the new master firewall.

pfsync(4) is also the name of the pseudo-device
on which PF state table changes are sent
(except states created by rules marked with the
no-sync keyword or by pfsync(4) packets).
pfsync(4) can be configured to use a physical
interface in order to merge and keep in sync the
state tables among multiple firewalls.

The physical synchronization interface can be set
through ifconfig(8), using the syncdev parameter.
For example, on our firewalls, we can write:

ifconfig pfsync0 syncdev rl2  

assuming that the rl2 interface is, on each host
(see picture), the interface on the 192.168.1.0/24
subnet (for Mickey and Minnie) or 192.168.2.0/24
(for Donald and Daisy), and cross-cabled to the
"beloved" firewall.

Crossover cables are recommended because the
pfsync protocol doesn't provide any
cryptography or authentication mechanism. If
you don't use a secure network, like a crossover
cable, an attacker may use spoofed pfsync
packets to alter the firewalls state tables and
bypass filter rules.

Alternatively, you can use the syncpeer keyword
to specify the address of the firewall to
synchronize with. The system will use this
address, instead of multicast, as the destination
of pfsync(4) messages, allowing the use of IPsec

to protect the communication. In this case,
syncdev must be set to the enc(4)
pseudo-device, which
encapsulates/decapsulates ipsec(4) traffic. E.g.:

ifconfig pfsync0 syncpeer 192.168.1.101

syncdev enc0  

To make these settings permanent after reboot,
we need to edit the /etc/hostname.pfsync0 file
on each firewall:

/etc/hostname.pfsync0

up syncdev rl2

6. PF rules!

The impact of CARP and pfsync on Packet Filter
rules is minimal. First, you need to let the
PFSYNC and CARP protocols pass on their
interfaces:

pass quick on rl2 proto pfsync keep state

(no-sync)  
pass on { rl0, rl1 } proto carp keep state

(no-sync)  

Then, when writing firewall rules, keep in mind
that, from pf(4)'s point of view, all traffic passes
through the physical interface. Therefore, in
cases like:

pass in on $ext_if [...]

you can keep referring to the physical, not the
virtual interface.

On the other hand, the virtual address is
associated to the CARP interface; thus, you
need to refer to it if the firewall offers any
services on its virtual address:

SSH on the virtual interface  
pass in on $int_if inet proto tcp from

$int_if:network to carp0 port ssh  

51

https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/ifconfig.8
https://man.openbsd.org/ifconfig.8
http://www.kernel-panic.it/openbsd/carp/carp2.html#net
http://www.kernel-panic.it/openbsd/carp/carp2.html#net
https://man.openbsd.org/pfsync.4
https://man.openbsd.org/pfsync.4
http://www.kernel-panic.it/openbsd/vpn/index.html
http://www.kernel-panic.it/openbsd/vpn/index.html
https://man.openbsd.org/enc.4
https://man.openbsd.org/enc.4
https://man.openbsd.org/ipsec.4
https://man.openbsd.org/ipsec.4
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4

or on a NATed server, through traffic redirection:

Mail server accessible from the internet 
pass in on $ext_if inet proto tcp from any
to carp2 port $mail_ports rdr-to $mail_srv 

In all other cases, CARP is perfectly transparent
to pf(4), as for services offered by the firewall on
its physical addresses:

SSH on the physical address  
pass in on $int_if inet proto tcp from
$int_if:network to $int_if port ssh

or for normal filtering:

External DNS  
pass in on $int_if inet proto { tcp, udp

} from $int_if:network to $dns_srv \  
 port domain  
pass out on $ext_if inet proto { tcp, udp

} from $ext_if to $dns_srv \  
 port domain

As an example, let's see a basic PF ruleset for
our external firewalls, Donald and Daisy:

## 
Macros and lists

 
##

##################################  
 
ext_if = rl0 #

External interface  
int_if = rl1 # DMZ

interface  
pfs_if = rl2 #

Pfsync interface  
carp_if = carp1 #

External CARP interface  
 
mail_srv = "mail.kernel-panic.it"

Mail server  
web_srv = "{ www1.kernel-panic.it,

www2.kernel-panic.it }" # Web servers  
dns_srv = "{ dns1.isp.com, dns2.isp.com }"

DNS servers  
int_fw = "{ mickey.kernel-panic.it,

minnie.kernel-panic.it }" # Internal fw  
 
mail_ports = "{ smtp, submission, imap, imaps

}" # Mail server ports  
web_ports = "{ www, https }"

Web server ports  
 
Allowed incoming ICMP types  
icmp_types = "{ echoreq, timex, paramprob,

unreach code needfrag }"  
 
Private networks (RFC 1918)  
priv_nets = "{ 127.0.0.0/8, 10.0.0.0/8,

172.16.0.0/12, 192.168.0.0/16 }"  
 
##

##################################  
Options, scrub and NAT

 
##

##################################  
 
set block-policy drop  
set loginterface $ext_if  
set syncookies always  
set skip on lo  
 
NAT outgoing connections  
match out on $ext_if from !$ext_if to any

nat-to $ext_if  
 
Redirect web services (with load balancing)  
match in on $ext_if inet proto tcp from any to

$carp_if port $web_ports \  
 rdr-to $web_srv round-robin sticky-address  
 
Redirect mail services  
match in on $ext_if inet proto tcp from any to

$carp_if port $mail_ports \  
 rdr-to $mail_srv  
 
##

##################################  
Filtering rules

 
##

##################################  
 
block all # Default

deny  
block in quick from urpf-failed # Spoofed

address protection  
 
Scrub incoming packets  

52

http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4
http://www.openbsd.org/cgi-bin/man.cgi?query=pf&sektion=4

match in all scrub (no-df)  
 
pass quick on $pfs_if proto pfsync keep state

(no-sync) # Enable pfsync  
pass on { $int_if, $ext_if } proto carp keep

state (no-sync) # Enable CARP  
 
block in quick on $ext_if from $priv_nets to

any  
block out quick on $ext_if from any to

$priv_nets  
 
Mail server  
pass in on $ext_if inet proto tcp from any to

$mail_srv port $mail_ports  
pass out on $int_if inet proto tcp from any to

$mail_srv port $mail_ports  
pass in on $int_if inet proto tcp from

$mail_srv to any port smtp  
pass out on $ext_if inet proto tcp from

$ext_if to any port smtp modulate state  
 
Web servers  
pass in on $ext_if inet proto tcp from any to

$web_srv port $web_ports \  
 synproxy state  
pass out on $int_if inet proto tcp from any to

$web_srv port $web_ports  
 
ICMP  
pass in inet proto icmp all icmp-type

$icmp_types  
pass out inet proto icmp all  
 
DNS  
pass in on $int_if inet proto { tcp, udp }

from $int_if:network to $dns_srv \  
 port domain  
pass out on $ext_if inet proto { tcp, udp }

from $ext_if to $dns_srv \  
 port domain  
 
Internet web servers  
pass in on $int_if inet proto tcp from

$int_fw to any port $web_ports  
pass out on $ext_if inet proto tcp from

$ext_if to any port $web_ports \  
 modulate state

7. Appendix

7.1 References

[PUIS] - Practical UNIX and Internet Security,
Simson Garfinkel and Gene Spafford, O'Reilly,
2003

[CARP] - "CARP License" and "Redundancy
must be free"

[LUCAS] - Cisco supports CARP? Ha ha ha
hahaha?

[PFFAQ] - PF: The OpenBSD Packet Filter

[RFC3768] - RFC 3768, Virtual Router
Redundancy Protocol (VRRP)

[RFC2281] - RFC 2281, Cisco Hot Standby
Router Protocol (HSRP)

[CARPFAQ] - PF: Firewall Redundancy with
CARP and pfsync

7.2 Bibliography

[ABSO] - Absolute OpenBSD, Michael W. Lucas,
No Starch Press, 2003

The Common Address redundancy Protocol
(CARP)

Firewall Failover with pfsync and CARP

Firewalling with OpenBSD's PF packet filter,
Peter N. M. Hansteen, 2008

The Book of PF, 2nd Edition, Peter N. M.
Hansteen, No Starch Press, 2010

The OpenBSD PF Packet Filter Book, Jeremy C.
Reed, Reed Media Services, 2006

53

http://oreilly.com/catalog/9780596003234
http://oreilly.com/catalog/9780596003234
http://www.openbsd.org/lyrics.html#35
http://www.openbsd.org/lyrics.html#35
https://blather.michaelwlucas.com/archives/1866
https://blather.michaelwlucas.com/archives/1866
http://www.openbsd.org/faq/pf/index.html
http://www.openbsd.org/faq/pf/index.html
http://www.faqs.org/rfcs/rfc3768.html
http://www.faqs.org/rfcs/rfc3768.html
http://www.faqs.org/rfcs/rfc2281.html
http://www.faqs.org/rfcs/rfc2281.html
http://www.openbsd.org/faq/pf/carp.html
http://www.openbsd.org/faq/pf/carp.html
http://www.absoluteopenbsd.com/
http://www.absoluteopenbsd.com/
http://www.openbsd.org/faq/faq6.html#CARP
http://www.openbsd.org/faq/faq6.html#CARP
http://www.openbsd.org/faq/faq6.html#CARP
http://www.openbsd.org/faq/faq6.html#CARP
http://www.countersiege.com/doc/pfsync-carp/
http://www.countersiege.com/doc/pfsync-carp/
http://home.nuug.no/~peter/pf/
http://home.nuug.no/~peter/pf/
http://nostarch.com/pf2.htm
http://nostarch.com/pf2.htm
http://www.reedmedia.net/books/pf-book/
http://www.reedmedia.net/books/pf-book/

Meet Daniele
Mazzocchio
Please tell us about yourself?

I'm a Unix/Linux system administrator, Python
developer, and a long-time OpenBSD fan.

I started a website, www.kernel-panic.it , a few
years ago, where I get to share some of my
OpenBSD documentation and software projects.

I've also written a Python module, py-pf, that
provides bindings for OpenBSD's Packet Filter.

Please, let us know more about your website
and blog. What is the most interesting topic
which can be found?

I guess the most interesting topic is OpenBSD
system administration. I started writing about
OpenBSD mainly for two reasons: to keep track
of my experiments with network services on
OpenBSD and to persuade other people,
including friends and colleagues, that OpenBSD
can do everything Linux does, and better!

I think that making a website that is at least
useful to me, made it useful to other people as
well and I hope it made someone's life easier.

In every article, before diving into the
configuration details, I also try to give some
technical background on the software and
protocols I use (such as IPsec, DNS, and LDAP).
I think this information helps readers to tweak
the proposed configuration to fit their needs and
requirements better.

Reading your blog, we can see that you have
a wide field of expertise. Tell us more about
your experience. Also, is OpenBSD your
favorite OS?

When I first fell in love with computers, all I
wanted to do was to learn as much as I could
about programming and operating systems. So I
started reading lots of documentation, RFCs,
books, and installed my first Linux system.

Linux looked like the perfect playground to learn
and experiment. It had so many powerful tools,
software, programming languages. I was also
very fascinated by the Open-Source community
for its strong ethics, sharing of knowledge, and
love of freedom.

And one day I discovered OpenBSD, the "secure
by default" OS, and fell in love with it and its
philosophy.

Why? What are your best features, the ones
you like the most?

I've always been very concerned about security.
Therefore, when I first heard about OpenBSD
and its security-centric approach, I definitely
wanted to give it a try; and I was pretty amazed
at how OpenBSD developers managed to
combine security with usability and simplicity.

My favourite feature is Packet Filter, combined
with CARP and pfsync for redundancy. It's the
best firewall I've ever worked with.

I'm also a very happy user of httpd(8) and
smtpd(8), which provide lightweight
replacements for nginx and sendmail.
Additionally,I love the OpenBSD installer
because it’s minimal, fast, and simple.

What is the most interesting programming
issue you’ve encountered?Why was it so
amazing?

Finding one is hard. All issues look trivial once
you find the solution!

Anyway, one of my first experiments with Python
has been writing my email client: this was long
ago, so I can’t remember all the issues I
encountered. However, I recall how each of them

54

http://www.kernel-panic.it/
http://www.kernel-panic.it/

forced me to read more documentation, RFCs,
source code; and all that research made me
learn a lot about programming, network
protocols, and standards.

Is Python your preferred language? Why
would you choose it over other programming
languages?

I have experimented with a few programming
languages, but I’m still most comfortable with
Python.

It is very readable, elegant and has a library for
everything; and unlike many of its critics, I never
experienced performance or memory footprint
issues with Python.

What was the most challenging
implementation you've done so far?

Shieldcore, a Canadian company, asked me to
collaborate on the creation of an
OpenBSD-based firewall appliance a few years
ago.

I was in charge of the backend development, i.e.,
the Python layer that allowed communication
between the web frontend and the Operating
System.

The challenge was to develop a full set of Python
bindings for OpenBSD and provide a complete
API to the web frontend. It's been a lot of work,
but it also gave me the opportunity to read lots
of OpenBSD code and to learn a lot from it!

What are your favourite features in the new
releases of OpenBSD?

I'm very grateful to Antoine Jacoutot for writing
syspatch(8), which makes it so much easier to
apply security errata. I'm also very excited about
the development of vmd(8), which I extensively
use in my test environments.

I also love features like pledge(2) and KARL
(Kernel Address Randomized Link), that show

how much OpenBSD developers’ do to improve
system security.

Do you have any specific goals for the rest of
this year?

I'd like to update and release parts of the code I
developed with Shieldcore; this would be the
first building block of an interface for making
management and monitoring of my OpenBSD
systems easier and faster.

I'd also like to learn to play the violin.

What's the best advice you can give to the
BSD magazine readers?

Always keep a rubber duck next to your
computer (personally, I have a pufferfish);
whenever you have an issue that seems
impossible to solve, talk to the duck about it. The
solution will come sooner than you’d expect. It
always works for me.

Thank you

Thanks for reading.

55

Expert Speak by E.G.
Nadhan

Just Takes 5 Seconds to
Grow Your Team Culture
How many times have you been in a situation where you are about to sharply critique a co-worker, a
colleague, an acquaintance for something they did not do right? Well, as it turns out, Gallup’s
workplace research suggests praise should outweigh criticism by a 5-to-1 margin. Five praises for one
criticism (if at all there is one). Chester Elton points this out in his article The 5-to-1 ratio that can
change your team culture. This is easier said than done. How can we ensure that we exercise some
control over the urge to critique? Well, say hello to the 5-second rule from Mel Robbins. Join me as I
walk you through how this rule could be applied to balance praise versus criticism to grow a positive
team culture.

Lately, I came across two powerful influencers in a span of a few weeks. Both influencers are strong
advocates of the principles they embrace. I am just fascinated by how one influencer’s principle could
be applied to the other with the goal of evolving a team culture that is most conducive to a healthy and
productive environment.

Principle 1: 5-second rule. Mel Robbins, a serial entrepreneur and one of the most booked motivational
speakers in the world, advocated the 5-second rule. In 2017, Mel broke self-publishing records with
her international best-seller, The 5 Second Rule. It was named the #1 audiobook in the world and the
fifth most read book of the year on Amazon. It is translated into 31 languages. The principle itself is very
simple. At those critical moments when you know what the right thing to do is but you find one excuse
or the other to rationalize and avoid doing it, take a deep breath and count down 5 - 4 - 3 - 2 - 1 and
magic happens! Key takeaway: Take pause!

Principle 2: 5-to-1 ratio. People want to know that their bosses see their effort and truly value it, says
Elton. This ties to feelings of job security and well-being. Employees also need the affirmation that their
co-workers see them as trustworthy, dependable, and creative. This reinforces that you have friends at
work, acceptance, and that others have your back. This is an ecosystem of psychological safety that
mitigates natural infighting and jealousies. An ecosystem that is reinforced with the 5-to-1 ration for
praise versus criticism. Key takeaway: Self-control.

56

https://www.linkedin.com/pulse/5-to-1-ratio-can-change-your-team-culture-chester-elton/
https://www.linkedin.com/pulse/5-to-1-ratio-can-change-your-team-culture-chester-elton/
https://www.linkedin.com/pulse/5-to-1-ratio-can-change-your-team-culture-chester-elton/
https://www.linkedin.com/pulse/5-to-1-ratio-can-change-your-team-culture-chester-elton/
https://melrobbins.com/
https://melrobbins.com/
https://melrobbins.com/hire-me-to-speak/
https://melrobbins.com/hire-me-to-speak/
https://melrobbins.com/hire-me-to-speak/
https://melrobbins.com/hire-me-to-speak/
https://www.audible.com/pd/Self-Development/The-5-Second-Rule-Audiobook/B06VX22V89?mkwid=DSATitle_dc&pcrid=239352017471&pmt=b&pkw=&source_code=GO1GB907OSH060513&cvosrc=ppc%20dynamic%20search.google.97175169&cvo_crid=239352017471&cvo_pid=5075902449&gclid=EAIaIQobChMImquX0efa2gIVXYezCh3gvQb1EAAYASAAEgLR-_D_BwE
https://www.audible.com/pd/Self-Development/The-5-Second-Rule-Audiobook/B06VX22V89?mkwid=DSATitle_dc&pcrid=239352017471&pmt=b&pkw=&source_code=GO1GB907OSH060513&cvosrc=ppc%20dynamic%20search.google.97175169&cvo_crid=239352017471&cvo_pid=5075902449&gclid=EAIaIQobChMImquX0efa2gIVXYezCh3gvQb1EAAYASAAEgLR-_D_BwE
https://www.audible.com/pd/Self-Development/The-5-Second-Rule-Audiobook/B06VX22V89?qid=1495733303&sr=1-1
https://www.audible.com/pd/Self-Development/The-5-Second-Rule-Audiobook/B06VX22V89?qid=1495733303&sr=1-1

Adrian Gostick and Chester Elton provide real solutions for managing culture change, driving
innovation, and leading a multi-generational workforce. Known as The Carrot Guys, they are authors of
the #1 New York Times, USA Today and Wall Street Journal bestsellers All In and The Carrot Principle.
Their books have been translated into 30 languages and have sold 1.5 million copies around the world.
So, how do these Principles come together? How can we apply them to be more effective in our
interactions in the workplace and even in our personal lives?

Here is how I plan on doing it.

Next time I make an observation that is likely to come across as a criticism of a fellow worker, a
colleague, a leader or a mentee, I am going to think of Mel Robbins and count down 5 - 4 - 3 - 2 - 1 to
see if this criticism is really called for. Are there other ways that the same message can be delivered in a
more positive tone? Once I count down and apply the 5-second rule, I am less likely to share the
criticism. Similarly, when I want to praise someone, I am not going to apply the 5-second rule. Praise
has a much more open avenue than criticism.

In an open culture, constructive criticism delivered with the overall team and project goals in mind is a
good practice. Even so, the 5-second rule can help us maintain a balance on ourselves. The rule also
gives us an opportunity to give a second, a third, a fourth and a fifth ... thought to an otherwise
spontaneous act. There you go. Two influencers. Two powerful principles, which can be applied in
tandem the spirit of a better team culture.

What’s your say? What is your ratio for praise versus criticism? Have you tried the 5-second rule? If
not, now is the time!

Here is what I say: 5 - 4 - 3 - 2 - 1 -- Zero -- Blast off to Team Culture!

 
Meet the Author

E.G. Nadhan is the Chief Technology Strategist for the Central Region at Red Hat. He provides thought
leadership on various concepts including Cloud, Big Data, Analytics and the Internet of Things (IoT)
through multiple channels including industry conferences, Executive Roundtables as well as customer
specific Executive Briefing sessions. With 25+ years of experience in the IT industry selling, delivering
and managing enterprise solutions for global corporations, he works with the executive leadership of
enterprises to innovatively drive Digital Transformation with a healthy blend of emerging solutions and a
DevOps mindset. Follow Nadhan on Twitter and LinkedIn.

57

http://www.carrotguys.com/
http://www.carrotguys.com/
https://twitter.com/NadhanEG
https://twitter.com/NadhanEG
https://www.linkedin.com/in/egnadhan
https://www.linkedin.com/in/egnadhan

Interview

Please tell us about yourself?

I live and work in Calgary, Canada (which is also home to the OpenBSD project). I’m a network engineer
by profession but have been using and involved in open source software as a hobby for many years
now. I never really got into gaming. I’m not very artsy. I like to build things. Building and maintaining
systems is my happy place. Luckily I don’t have to do that for work, so it’s strictly something I do for
myself and fun. I’m an original contributing author to the OpenBSD PF User’s Guide
(http://www.openbsd.org/faq/pf) and the original author of some of the native OpenBSD SNMP MIBs
(packetmischief.ca/openbsd-snmp-mibs, cvsweb.openbsd.org/cgi-bin/cvsweb/src/share/snmp/). I’ve contributed
some minor patches to the OpenBSD pf(4) subsystem and network stack over the years. I have a
technology blog at www.packetmischief.ca where I write about systems, software, code, security, and
networks. I’m also on Twitter as @knight_joel where I tweet about the same. My Github is
github.com/knightjoel.

How you first got involved with programming? What was your path?

I should state outright that I don’t consider myself a programmer :-). I watch the commits that go into
OpenBSD and FreeBSD: those folks are programmers. I’m a hobbyist who enjoys fixing problems and
creating useful code (usually for myself and then shared as open-source). I was fortunate enough to be
exposed to introductory C while still in high school. I loved being able to build software with my own
hands (my favorite toy as a kid was LEGO), and so I took some additional courses but it was nothing
like what kids have access to in school now. The courses were elementary, and the instructors often
knew only slightly more than the students, if we were lucky. However, everything changed when I got
my first Linux CD and started delving into the open-source world. “Wow, there’s a full C/C++ compiler
on here!” “Wow, there are other languages like Perl on here!” “Wow, I can learn a lot more now!” So
from there, I got some books and started using Perl which wasn’t a steep learning curve because I was
able to reuse a lot of the constructs I learned with C (conditionals, control flow, etc.). And from there it
was just natural to learn a bit of shell, PHP when it came along, and most recently, Python. The thrill of
building things has motived me the whole time.

Reading your profile we can see that you have a wide field of expertise. Please tell us which area
is your favourite one?

Yes, I’m interested in a lot of areas. I like pretty much anything to do with IT infrastructure. Or put
another way, anything that isn’t user-facing :-) Network engineering is the area I have the most

58

Interview with  

Joel Knight

http://www.openbsd.org/faq/pf
http://www.openbsd.org/faq/pf
http://packetmischief.ca/openbsd-snmp-mibs
http://packetmischief.ca/openbsd-snmp-mibs
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/share/snmp/
http://cvsweb.openbsd.org/cgi-bin/cvsweb/src/share/snmp/
http://www.packetmischief.ca/
http://www.packetmischief.ca/
http://github.com/knightjoel
http://github.com/knightjoel

experience and training, and that’s what’s put food on my table for many years now. I like networking a
lot. Recently, I’ve shifted my career to the cloud where I’ll have to hone my skills in new areas such as
databases, analytics, and AI. I can’t say I have a specific favorite. I like learning new skills, and I’m not
content saying “oh this one is my favorite so I’m just going to concentrate on this now”.

What is your favourite OS? Why? What features are the best and what you like the most?

Windows 10, obviously ;-)

Again I’m going to kind of sit on the fence and say I don’t have an absolute favorite. My general
approach to things is “use the right tool for the job”. I’ve adopted this strategy for my systems in the
last couple of years: OpenBSD for my regular shell machine and any machines that need to be
exceptionally hardened and have focused use-cases (i.e., DNS server, SMTP server, etc.). For machines
that need to run a web stack and for the few machines I run in the cloud or as a VPS, it’s FreeBSD. I
just can’t beat how easy it is to upgrade the OS with the freebsd-update(8) tool. And in a cloud
environment where I have sketchy console access to the VM, being able to do that upgrade over an
SSH session is a life saver. Sometimes I pick FreeBSD as well because it takes less time to upgrade it,
and I don’t want to add another OpenBSD machine to the mix which will increase my time spent doing
OS maintenance. When I planned this strategy, I’m pretty sure OpenBSD didn’t have the syspatch(8)
utility so even just patching a remote VM was easier with FreeBSD. That’s gotten really easy and
stress-free with syspatch now though. I appreciate and respect the cleanliness and simplicity in
OpenBSD. There’s nothing extra; nothing wasted. It’s focused and elegant, and it’s not just because of
what goes into the code, it’s because of their commitment to their goals
(https://www.openbsd.org/goals.html). Release after release, you always know what you’re getting with
OpenBSD, and that has kept me using and interested in their software. My main workstation at home is
Windows 7, and I have a MacBook Pro at $WORK.

You know a lot of programming languages. What is the most interesting programming issue you
encountered and why it was so amazing?

Well, I'm not sure if this is all that amazing, but it was challenging. As my first foray into Python, I was
writing a web app that had a feature that allowed users to upload pictures. The app received the binary
blob, stored some metadata about the picture, and then stored the image on the file system. A user
could then use the web app to view the photos that had been uploaded. So I wrote the code to do this,
tested it, and was pretty pleased when I got it to work. What I hadn't thought carefully about though
was that the users of this app would all be on mobile devices and depending on how the user was
holding the device, the image could be rotated so it appeared sideways or upside down (of course
pictures always display with the correct orientation on the device because the device accounts for the
rotation). This was disheartening because I felt like approximately 0% of the user base would follow
instructions to only orient their phone in a specific way to work around this.

I knew I needed a way to programmatically ascertain the orientation of the image and then needed a
way to rotate the image before saving it to the file system. I also knew that some image formats stored
metadata about the image using Exif (https://en.wikipedia.org/wiki/Exif). Therefore, I started there and
found that sure enough, rotation was a value that Exif captured. I eventually found this page
(https://www.impulseadventure.com/photo/exif-orientation.html) that nicely explains the different values
in the Exif rotation info. Next, though, I needed some code to parse the Exif info and manipulate the

59

https://www.openbsd.org/goals.html
https://www.openbsd.org/goals.html
https://en.wikipedia.org/wiki/Exif
https://en.wikipedia.org/wiki/Exif
https://www.impulseadventure.com/photo/exif-orientation.html
https://www.impulseadventure.com/photo/exif-orientation.html

image file. In keeping with the Don’t Repeat Yourself principle, I went looking for a Python module. It
doesn’t take much googling to discover Pillow (http://python-pillow.org/) is the defacto Python library
for working with images, and the Piexif library (http://piexif.readthedocs.io/en/latest/) is perfect for
reading Exif data. In the end, the (simplified and abbreviated) code looks like this:

from PIL import Image

import piexif

img = Image.open(file)

if "exif" in img.info:

 exif_dict = piexif.load(img.info['exif'])

 if ('0th' in exif_dict

 and piexif.ImageIFD.Orientation in exif_dict['0th']):

 orientation = (exif_dict['0th'].pop(piexif.ImageIFD.Orientation))

 deg = None

 if orientation == 3:

 deg = 180

 elif orientation == 6:

 deg = -90

 elif orientation == 8:

 deg = 90

 if deg:

 img = img.rotate(deg, expand=True)

A small side note: for anyone wondering why I didn't handle image rotation in the web layer using some
CSS: it's a nightmare. Some browsers will honor the rotation info in Exif out of the gate; others not. One
browser honored Exif data only if you opened the raw image file in the browser and not if the image
was loaded via tag. Support in mobile browsers was (still is?) far from complete.

What tools do you use most often and why?

I’m very uptight about having the right tools in place on my systems. Vim is my editor of choice. I no
longer remember why I chose Vim, but I keep using it because it’s what I know now. I suppose most of
the CLI tools I use are standard and/or boring: ssh, git, zsh, tmux. I’ll mention a few I use on my
workstations/iPad:

- Evernote: I use it for all kinds of things, but with respect to systems, I document each OS upgrade I
do (learning from my mistakes) as well as any chronic or difficult issues I have with software, and the
path I took to solve the issue. History seems to repeat itself so having a record of what I did in the past
has often saved me a lot of time in the present.

- RememberTheMilk.com: Reminders and task management. I use it for all areas of my life, but again
with respect to systems, I’ll make a note like “upgrade such-and-such software to version X” when I
see a security alert for software I use. Or if I’m doing a maintenance task on a system and I realize I
should automate it, I’ll make a note about how painful the task is and jot some quick ideas on how it

60

http://python-pillow.org/
http://python-pillow.org/
http://piexif.readthedocs.io/en/latest/
http://piexif.readthedocs.io/en/latest/
http://img.info/
http://img.info/
http://img.info/
http://img.info/

could be automated. This way, I’m not wasting brain cycles on keeping these tasks fresh in my
memory. You could say I’m offloading them to near-line storage where I retrieve them when I’m ready to
sit down and work on something.

- OpenVPN: My headend box is running OpenBSD (going back to what I said above about hardened
systems), and I have Windows, FreeBSD, OS X, and Apple iOS devices as clients. I have a small script
that runs after a client successfully authenticates. The script loads some pre-defined rules into a pf(4)
anchor on the headend that permits/denies the client’s IP address to be able to connect to certain
things. With this setup, I can customize the rules that are applied to each VPN user or device.

- Zabbix: Systems always seem to break when I have the least interest in fixing them (ps, I’m never
interested in fixing them). Therefore, I always monitor key metrics on everything to get as much early
warning as I can that something is amiss. I’m a huge fan of Zabbix now after using Cacti for many years
(https://www.packetmischief.ca/2017/02/15/why-i-enthusiastically-switched-from-cacti-to-zabbix-for-system-monitoring/)

Can you tell us about your favourite features in the new releases of your favourite OS?

Well, I’m a network nerd; hence, anything that happens around the network stack in OpenBSD usually
gets my attention. For a while now, some of the network hackers have been digging deep into the
network stack to move its parts out from the KERNEL_LOCK. I don’t pretend to know enough of the
architecture of the BSD kernel to understand what this means in detail. However, I do know that it will
allow those parts of the stack to work in parallel on multiprocessor systems. This is pretty exciting for
anyone that uses OpenBSD as a router or firewall, and I imagine on servers or workstations that need
high network IO. I mentioned this earlier, but I’ll give another shout out to the syspatch(8) utility which
landed in OpenBSD 6.1. For anyone that manages multiple OpenBSD systems, the ability to pull down
binary patches for the base system—that are of course cryptographically verified—is not only a huge
boost to productivity but also makes managing OpenBSD systems a lot less labor intensive. My thanks
to everyone who contributes to making and hosting the patches, and working on the tools to distribute
and install them.

Do you have any specific goals for the rest of this year?

I took a new job with a large cloud provider this year, so most of my professional goals revolve around
getting trained and learning how to properly architect solutions on the platform. Beyond that, I’ve got a
bit of code I want to hack and always lots of blog posts to write.

What’s the best advice you can give to the BSD magazine readers?

Open-source isn’t an exclusive club. It’s not only for advanced/ experienced programmers. It’s not just
for people that fit a certain demographic or stereotype. If you have the desire and the passion for being
more than a user of a piece of open-source software, then that’s enough. Find an area within the
project where you can contribute. If I use OpenBSD as an example, people contribute to the C code (of
course), but also shell code, Perl code, man page content, web site content, FAQ content, upgrade
guide content, and more. Try to marry up your skills and experience with an area that the project could
use and jump in! And have fun while doing it!

Thank you

61

https://www.packetmischief.ca/2017/02/15/why-i-enthusiastically-switched-from-cacti-to-zabbix-for-system-monitoring/
https://www.packetmischief.ca/2017/02/15/why-i-enthusiastically-switched-from-cacti-to-zabbix-for-system-monitoring/

Column

Online shopping and electronic transactions are
revolutionizing the way business is being carried out,
both for individuals and corporate entities. Are we
entering a golden age of choice, or should the Latin
phrase Caveat Emptor be embedded on every “accept”
button for Internet sales?

by Rob Somerville

I’ve just been ripped off for £153.25 for a Samsung Galaxy J5 mobile phone. Or to be more accurate,
Amazon have, along with approximately 1,000 other customers who have paid exorbitant amounts of
money to a clearly fraudulent storefront that has exploited a subtle flaw in the E-commerce model that
Amazon, eBay, and PayPal operate. At the time of writing, I estimate Amazon is facing losses of
£150-250K on this one storefront alone, but the total combined losses across the aforementioned
platforms is well into the millions. Speaking to the Royal Mail customer services department
concerning this, it is clear that carriers are under pressure due to this scam, and while I cannot
remember the exact words the very pleasant and apologetic gentleman used, the impression I got is
that this practice is endemic.

The scam is simple, but like all fraudulent activity, it exploits the foundations on which any civilised
society is built upon – trust. First of all, you build a E-storefront that has good reviews, be it through
selling to a bunch of friends or conspirators. The importance here is to get good reviews and build a
good reputation. The next step is simple, offer some goods for sale slightly below market value, and
wait for the orders to come in. You don’t want to be too greedy, just pitch your sale slightly below the
retail price, enough to attract buyers attention into thinking they have good value, but not a tremendous
bargain. What you are looking for is sales quantity, but at the same time not to trigger any suspicion as
to the goods being “too cheap” or possibly stolen. This is the real hook to get the customer on the line,
rather than what comes next.

62

Once the orders start coming in, the process is simple. As payments are released to your vendor
account via the trust network of being signed on delivery, dispatch the first order with the
corresponding delivery ID to your accomplice, not to the person who ordered it. The carrier will flag this
package as being delivered and signed for, authorize the aggregator (in this case Amazon) to release
payment, and you have a credit in your account. When the original customer complains his goods were
not delivered, apologize, and send a useless piece of junk (in my case, a £1 silicon telephone stand)
using the delivery ID assigned to your next customer. In my case, despite being a “signed for” Royal
Mail package, the carrier posted the thin padded envelope through the door, and it was not signed for.
Oops. Wash, rinse and repeat.

How deeps this fraud goes, is hard to ascertain. The other more sinister model is to hijack or hack a
genuine vendor account with a good reputation, although I seriously doubt that this is the case in this
particular instance. I will not be naming names in this article, as the latter scenario is still to be proven
or disproved, and all the relevant evidence has been passed to the police concerning this trader, and I
hope it will be investigated as criminal fraud.

What is really quite unpalatable about this whole matter is over a month down the road, Amazon is still
mopping up. While the number of negative comments regarding this seller has clearly peaked, there
are many upset customers still posting about this criminal. When you read the comments section,
where disabled children saved up over months for a mobile phone or tablet, and are ripped off, it
breaks your heart. While Amazon has stuck by their A-Z guarantee, that does not compensate for the
disillusionment, nor the pain a parent has to experience in explaining to a child that the world is a big,
bad place out there. My daughter is no innocent, but to use a more British and American colloquialism
– Amazon has pissed on their chips. The phone in question was her 18th birthday present. And a
disillusioned Millennial, a loyal customer does not make.

The problem here is a systemic one. 99% of the time, everything goes as expected, and it would be
unfair of me to damn Amazon based on this one isolated incident. Overall, I have had an excellent
experience shopping online with the company, although others who have tried to sell through their
portal have expressed frustration with their lack of customer support. The biggest criticism seems to be
their dependence on customer reviews as a selling tool, and that has been a clear refrain by consumer
watchdog groups, as these metrics can be easily poisoned. The same applies to eBay et al, so it is not
just Amazon that suffers from this problem. What is disturbing is their apparent complacency.

I raised my concerns with Amazon over three weeks ago regarding this trader, and while I have had a
refund, the window of opportunity for these crooks has remained wide open, flapping in the wind.
Meanwhile, the brand reputation of Amazon lies somewhere between Congress and colonoscopy,
certainly as far as the additional hundreds of customers who have continued to voice their concerns
and were ripped off in the meantime.

It is all very well selling convenience, but like a number of other major players in the digital economy,
Amazon will now be faced with the unpalatable truth that reputation is slow to build and quick to erode.
I have approached Amazon for comment, maybe I embarrassed them just a bit too much, by asking
them the exact number of customers affected, and how much they have had to refund and what they
intend to do about this whole sorry affair. After all, they are just as much a victim of this scam as my
daughter. The best I could elicit from an Amazon spokesperson was the following statement:

63

“We are committed to providing our customers with the best possible shopping experience. All sellers
on Amazon must adhere to our selling guidelines. Any seller found to contravene those guidelines will
be subject to action from Amazon including removal of product listings and their account.”

“The Amazon A-to-z Guarantee provides additional protection for customers who buy from
Amazon.co.uk’s third party sellers and if a customer received the item, but the item was defective,
damaged, or not the item depicted in the seller's description, we will refund or replace that item. For
more information on our A-to-z Guarantee, please visit:

http://www.amazon.co.uk/gp/help/customer/display.htmlie=UTF8&nodeId=3149571&qid=1239202264&
sr=1-1”

I trust that Amazon does a lot more than just suspend these fraudsters’ accounts. I suspect we will
never know the exact scale of any losses that Amazon have had to absorb, they may have some sort of
payment escrow or re-insurance in place so their losses are in reality a lot less. Who knows the
mysteries that can be covered by the magic words “commercially sensitive”? What is undisputed
though, is irrespective of how much of a financial hit Amazon may have taken, this is an industry-wide
problem, and unless the likes of Amazon, eBay, PayPal etc. get together with the banks, law
enforcement and the couriers, fraud like this will continue on a growing scale.

Currently, this fraud looks as if it has burnt itself out. Apart from the occasional automated or prepaid
5-star rating that appears in a sea of condemnation, only a few unhappy customers have commented in
the last few days, which is good news. The bad news is, I believe Amazon has hit an all-time record,
with a vendor who has a 97% negative rating. Or if you prefer words to numbers, as one ripped off
customer said: “They are pure scum, just avoid them.”

It appears that Caveat Emptor (buyer beware) is just as applicable now, as when it was first vocalized in
English law in the 1600s, irrespective of how significant the brand is, or the modern technology.

64

65

www.balabit.com

Among clouds

 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second

zero message loss due to the

Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition

product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

66

