

2

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

3

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

EDITOR’S
WORD

Dear Readers,

I hope you are well. The editor’s word will sound a little bit different since we are close to ushering the final
edition of the year. It’s a month that we reflect on our lives, our goals, and most importantly, plans on what to
do in the following year. I hope you enjoyed all the monthly issues of 2017. Suffice to say, there will be one
more issue at the end of December just to crown this wonderful year of 2017. We really appreciate your
readership and engagement, and hope to provide you with more meaningful content in 2018.

I hope you started doing your New Year’s lists and Christmas presents lists. I believe it’s that time of the year
when we should have some fun and joy by providing surprises for others. I really like Christmas time and the
mood it sets towards the end of the year. I hope that you will have time to prepare and eventually enjoy the
good moments during this festive season before we come to the close of the year.

I also hope that you have prepared a list on what you would like to learn in 2018. Which interesting tool and
technology have you found lately during your free time? Please share them with me so that I can surprise you
with an online course on this tool or technology in 2018. With BSD magazine, be sure to learn about your
favourite tool or technology. This is one of our obligations to our readers. Hence, I look forward to your emails.

Now, let’s take a peek into this issue. You will find many great and technically interesting articles for you. I really
like all the articles, and I am thankful to all the authors for their patience when we were preparing them. I invite
you to look over the list of articles on the next page. Lastly, a big thank you to all our reviewers for their valuable
suggestions on how to make the articles better.

So, just sit back, get a light drink, and engage with the authors’ minds.

Enjoy reading,

Ewa & The BSD Team 
ewa@bsdmag.org

4

Note!

Remember to read TOOL REVIEW
on page 6 and learn about Web
Development Forensics with
BugReplay by David Carlier 

mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org

FREEBSD

OpenLDAP Directory Services in FreeBSD (I).
Dynamic Configuration Fundamentals 08 
José B. Alós 
The main objective of this article is to introduce
directory services managed under the LDAP
protocol, and to illustrate a new configuration
approach known as Online LDAP Configuration
(OCL) which was introduced in OpenLDAP v2.3.

Fluentd For Centralized Logging II:  
Fluentd-UI and Suricata IDS 22 
Andrey Ferriyan 
Andrey will explain in detail how to collect our logs in
the server then forward and process these logs so
we can have better and meaningful information. He
is collecting logs from Suricata
(https://suricata-ids.org), which is a signature-based
Intrusion Detection System (IDS) like Snort.

FreeBSD, Google Cloud, and Dual ECC/RSA  
Let's Encrypt Certificates 26 
Bob Cromwell 
Bob Cromwell deployed a website to FreeBSD on
the Google Cloud Platform. He set up HTTPS with
free Let's Encrypt (letsencrypt.org) TLS certificates
for both RSA and ECC, and set up automatic
renewal of the dual certificates. None of this is
difficult, but he discovered that some steps aren't
openly supported or well documented. Specifically,
running FreeBSD on IaaS or Infrastructure as a
Service cloud environment, and automatically
renewing dual RSA/ECC Let's Encrypt certificates.

Mongoose Embedded Web Server on FreeBSD 38 
Abdorrahman Homaei 
Internet of things (IoT) is getting more popular, so
maybe, FreeBSD and Mongoose would be a wise
choice. With FreeBSD and Mongoose, you can run a
full-fledged, fast and minimal web server.
Additionally, you can run Mongoose on
non-embedded devices. For example, “corebox.ir” is
based on mongoose web server.

DATABASE

Using PostgreSQL Foreign Data Wrapper to Keep
Track of Files 42 
Luca Ferrari 
This paper proposes a simple setup of a File System
FDW that allows a system administrator or an
application to query the filesystem to get information
about files, as well as storing at least one historical
version of the latter.

ADMIN

Free RDP Configuration 48 
Loris Zimmerman  
In this article, you will learn how to setup HP t620
Thin Client with Linux Kernel.

INTERVIEW

Interview with Abdorrahman Homaei 52 
Ewa & The BSD Team 
Currently, Abdorrahman is busy with daily
administration tasks and CoreBOX development
which are getting harder and more intense.

Interview with Oleksandr Tymoshenko 54 
Ewa & The BSD Team 
Oleksandr is a software developer with more than 15
years of experience. He worked on a number of
projects in various fields including Linux PDA
software, SMS center for GSM telco, servers for
multiplayer games, IP PBX box, and firmware for
VoIP phones.

COLUMN

On October 1st, the Network Enforcement Act
took effect in Germany. This creates a legal
framework for censorship of the Internet. As
more and more governments take the hammer of
censorship to content, what are the ramifications
for free speech. More importantly, has the
Internet come of age? 58 
Rob Somerville  
 

5

TABLE OF CONTENTS

TOOL REVIEW

Every web developer has his set of tools for
debugging a web application. The most common
developer tools are Firebug for Firefox, Chrome’s
Developer Tools, and Internet Explorer’s Developer
Toolbar. All of these can be used to inspect HTML
elements, Javascript, CSS styles, network traffic,
and Ajax calls. These tools are great, but have one
downside: all of these data is produced in real time
but not recorded. But what if you want to spot a
specific bug scenario to study and to replay it at
will? To display to the rest of the development team,
your client, etc. This can be useful especially if the
bug is triggered only in a very specific case such as
a web form filled with invalid data, triggering an Ajax
call which takes longer than it should, triggering a
bug in client-side Javascript. We can go on a long
list of possible use cases when this type of tool. To
use BugReplay, you’ll need the
Chrome/Chromium/Iridium browser; you’ll also need
to download the extension and register an account
on http://www.bugreplay.com.

The BugReplay extension works basically in two
modes. Snapshot mode takes a static picture of the
current page to be able to spot, for example,
misplaced HTML elements. Video mode records for
a couple of seconds to be able to reproduce a
specific scenario as explained above with those two
explicit icons.

6

Web Development Forensics with
BugReplay

reviewed by David Carlier

http://www.bugreplay.com/
http://www.bugreplay.com/

As you can see in the last illustration, there is a blue
icon to allow us to report or to give immediate
feedback to BugReplay team within reasonable work
hours. Once the snapshot is taken, you can apply
various modifications such as cropping, resizing, and
putting a comment and drawing on top of it to
highlight the problem, useful even for
non-developers individuals.

Then, there is the video mode which completes just
as well as the snapshot mode,

where also network and Javascript traffic are
recorded (seemingly not available in the trial), video
relatively immediately available after post processing
to us. Nevertheless, this is a set of tools which can
have its place as we can realise through the trial;

One warning: the data that is collected is stored in
BugReplay's cloud. Because of this, you will need to
decide if this is appropriate from your particular
application. Apart of this, it gets the job done as
promised.

About BugReplay

BugReplay, a provider of an innovative set of web
browser tools that make reporting bugs faster and
fixing them easier, today announced the availability
of its flagship product of the same name as an
add-on for the Firefox web browser. A screencast
and network debugging tool for web developers and
internal software testers, BugReplay enables users
to quickly and accurately submit detailed bug
reports about web applications. By creating a
synchronized screen recording of a user’s actions,
network traffic, JavaScript logs and other key
environmental data, BugReplay reduces the time to
complete the task of bug reporting of up to an hour
or more to less than a minute.

Founded in 2015, BugReplay is a leading provider of
an innovative set of web browser tools that make
reporting bugs faster and fixing them easier. Its
mission is to develop easy-to-use tools for
diagnosing and repairing issues with web
applications. Based in New York City, BugReplay’s
offerings include: BugReplay, a screencast and
network debugging tool for web developers and
internal software testers; and Feedback by
BugReplay, a reporting tool for website users to
submit bug reports to customer support teams. For
more information, visit http://www.bugreplay.com
and follow on Twitter @BugReplay.

7

https://www.bugreplay.com/feedback-by-bugreplay
https://www.bugreplay.com/feedback-by-bugreplay
https://www.bugreplay.com/feedback-by-bugreplay
https://www.bugreplay.com/feedback-by-bugreplay
http://www.bugreplay.com/
http://www.bugreplay.com/
https://twitter.com/@bugreplay
https://twitter.com/@bugreplay

FREEBSD

The main objective of this article is to introduce
directory services managed under the LDAP
protocol, and to illustrate a new configuration
approach known as Online LDAP Configuration
(OCL) which was introduced in OpenLDAP v2.3. We
will also present a direct application to encapsulating
a NIS+/YP centralized user authentication and
management schema for an arbitrary number of
servers and clients connected to a TCP/IP network.
Additionally, we’ll show a web-based administration
tool that will make administering the OpenLDAP
server easier.

An Overview of Directory
Services
Directory services are a special type of database
storage systems focused on heterogeneous,

hierarchical data. In comparison to traditional
full-service standalone relational databases
management systems, the number of LDAP read
operations exceed write operations. The read
operations are mainly searches of special data which
follow the patterns described by RFC 1558. For this
reason, the standard RDBMS approach is
abandoned in favor of key-value databases used as
a backend.

LDAPv3 introduces some key improvements over its
predecessor LDAPv2 such as:

UTF-8 Internationalization Support for foreign
languages

Enhanced Security Mechanisms such as SASL for
authentication

8

OpenLDAP Directory Services in FreeBSD (I).
Dynamic Configuration Fundamentals

What you will learn:

• Installation and configuration methods for OpenLDAP 2.4 under FreeBSD

• Basic foundations of the new LDAP on-line configuration (OLC)

• Hardening LDAPv3 with SASL and TLS/SSL protocols

• Embedding of NIS+/YP into an LDAP server to provide centralized NIS+ support for UNIX computers

• Administration and basic tuning principles for LDAP servers

What you should already know:

• Intermediate UNIX OS background as end-user and administrator

• Some knowledge of UNIX authentication systems and NIS+/YP

• Experience with FreeBSD system package and FreeBSD ports

• Good taste for command-line usage

In LDAP, authentication is required after the initial
"bind" operation. LDAPv3 supports three types of
authentication: anonymous, simple, and SASL
authentication. A client that sends an LDAP request
without doing a "bind" is treated as an anonymous
client.

Simple authentication consists of sending the LDAP
server the fully qualified Distinguished Name (DN)
and a clear-text password of the client. The security
weakness with this mechanism is that the password
can be read by anyone who can access the network.
You can use a simple authentication mechanism
within an encrypted channel (such as SSL) to avert
exposing the password in this manner provided that
it is supported by the LDAP server.

Finally, SASL is the Simple Authentication and
Security Layer described by RFC 2222. It specifies a
challenge-response protocol in which data is
exchanged between the client and the server for
authentication and establishment of a security layer
on which to carry out subsequent communication.
By using SASL, LDAP can support any
authentication by a secured negotiation between the
LDAP client and server.

Getting Started with OpenLDAP

Installation Procedure

One obvious and important requirement is an
updated and running installation of FreeBSD OS,
which at the time of writing was FreeBSD 11.1.

It is possible to take advantage of virtualization
technologies to simplify the installation and testing
process so long as it has a functional internet
connection to perform package downloads or a
reachable local repository mirror.

First, let us ensure we are up to date with the current
patches and fixes in BASE by running:

root@laertes:~ # /usr/sbin/freebsd-update fetch

root@laertes:~ # /usr/sbin/freebsd-update install

Next, ensure that our package database is up to
date and pkgng-ready by running:

root@laertes:~ # pkg upgrade

Updating FreeBSD repository catalogue...

FreeBSD repository is up to date.

All repositories are up to date.

Checking for upgrades (1 candidates): 100%

Processing candidates (1 candidates): 100%

Checking integrity... done (0 conflicting)

Your packages are up to date.

Following the update of pkg(1), we will need to install
the ports tree to install OpenLDAP+SASL as official
pre-built binaries for OpenLDAP. DO NOT include
SASL support. If you do not require SASL, you can
install using the standard `pkg install` routine vs. the
ports. To install the ports tree:

root@laertes:~ # portsnap fetch extract

Looking up portsnap.FreeBSD.org mirrors... 6
mirrors found.

Fetching public key from
ec2-eu-west-1.portsnap.freebsd.org... done.

Fetching snapshot tag from
ec2-eu-west-1.portsnap.freebsd.org... done.

Fetching snapshot metadata... done.

Fetching snapshot generated at Tue Oct 10 02:00:56
CEST 2017:

…

/usr/ports/x11/yeahconsole/

/usr/ports/x11/yelp/

/usr/ports/x11/zenity/

Building new INDEX files... done.

The download and extraction of portsnaps tarball
takes a while, a good time for coffee or your
preferred beverage.

Once portsnap has finished its work, install the
portmaster utility as a pre-built pkg and continue
with building our packages:

root@laertes:~ # pkg install portmaster

Updating FreeBSD repository catalogue...

Fetching meta.txz: 100% 940 B 0.9kB/s 00:01

9

Fetching packagesite.txz: 100% 6 MiB 175.1kB/s
00:35

Processing entries: 100%

FreeBSD repository update completed. 26972 packages
processed.

All repositories are up to date.

The following 1 package(s) will be affected (of 0
checked):

New packages to be INSTALLED:

 portmaster: 3.17.10

Number of packages to be installed: 1

42 KiB to be downloaded.

Proceed with this action? [y/N]: y

[1/1] Fetching portmaster-3.17.10.txz: 100% 42
KiB 42.6kB/s 00:01

Checking integrity... done (0 conflicting)

[1/1] Installing portmaster-3.17.10...

Extracting portmaster-3.17.10: 100%

Although it is not strictly necessary, ensure there is
consistency with previous FreeBSD releases by
means of the following command:

root@laertes:~ # pkg2ng

Converting packages from /var/db/pkg

Analysing shared libraries, this will take a
while...

Checking all packages: 100%

Once the ports package system has been
successfully installed and updated, switch to the
/usr/ports/ directory. The port we want to install is
OpenLDAP 2.4 server, and is available as
net/openldap24-server/ in the ports directory.
Remember to install the OpenLDAP server by
compiling the sources with the following options
selected prior to starting the compilation process
GSSAPI, PPOLICY, MEMBEROF, DYNLIST,
DYNGROUP, REFINT, SHA2, SASL, and UNIQUE
during the openldap24-server port configuration
shown in the dialog by Illustration 1

root@laertes:~# cd /usr/ports

root@laertes:/usr/ports# portmaster
net/openldap24-server

Figure 1: Portmaster OpenLDAP Sever Options Dialog

Additionally, you can choose NLS support for the
standard GSSAPI_BASE which is enough for our
purposes; as such we need neither HEIMDAL nor
MIT support for GSSAPI. The `portmaster` utility will
attempt to resolve all of the required dependencies
automatically.

===>>> The following actions will be taken if you
choose to proceed:

 Install net/openldap24-server

 Install devel/icu

 Install devel/gmake

 Install security/cyrus-sasl2-gssapi

 Install devel/libtool

 Install print/texinfo

 Install devel/gettext-tools

! Install misc/help2man

 Install devel/p5-Locale-gettext

===>>> Proceed? y/n [y]

…

when completed, portmaster will report:

The OpenLDAP server package has been successfully
installed.

In order to run the LDAP server, you need to edit

 /usr/local/etc/openldap/slapd.conf

10

to suit your needs and add the following lines to
/etc/rc.conf:

 slapd_enable="YES"

 slapd_flags='-h
"ldapi://%2fvar%2frun%2fopenldap%2fldapi/
ldap://0.0.0.0/"'

slapd_sockets="/var/run/openldap/ldapi"

Then start the server with

 /usr/local/etc/rc.d/slapd start

or reboot.

Try `man slapd' and the online manual at

 http://www.OpenLDAP.org/doc/

for more information.

slapd runs under a non-privileged user id (by
default `ldap'),

see /usr/local/etc/rc.d/slapd for more information.

===>>> Done displaying pkg-message files

===>>> The following actions were performed:

 Installation of devel/gmake (gmake-4.2.1_1)

 Installation of devel/icu (icu-59.1,1)

 Installation of devel/gettext-tools
(gettext-tools-0.19.8.1)

 Installation of devel/p5-Locale-gettext
(p5-Locale-gettext-1.07)

 Installation of misc/help2man
(help2man-1.47.5)

 Installation of print/texinfo (texinfo-6.5,1)

 Installation of devel/libtool (libtool-2.4.6)

 Installation of security/cyrus-sasl2-gssapi
(cyrus-sasl-gssapi-2.1.26_7)

 Installation of net/openldap24-server
(openldap-sasl-server-2.4.45_2)

It is recommended to install the gnutls package to
enable security features such as TLS/SSL:

root@laertes:/usr/ports# portmaster
security/gnutls

In addition, select the options available at the dialog
in Illustration 2, including UCS4 Unicode Support,
NLS, and GSSAPI_BASE option. A long set of
packages will be installed to meet all dependencies
after a while.

Figure 2: GNUTLS Package Portmaster Installation Dialog

Notice that gnutls installs symlinks to support root
certificate discovery by default for software that uses
OpenSSL, thereby enabling SSL Certificate
Verification by client software without manual
intervention. Nevertheless, if you can replace the
following symlinks with either an empty file or your
site-local certificate bundle if you prefer to do this
manually.

 /etc/ssl/cert.pem

 /usr/local/etc/ssl/cert.pem

 /usr/local/openssl/cert.pem

Gnutls utils will be used later on to check some TLS
features incorporated into our OpenLDAP server.

TLS/SSL Support

Alternatively, it is possible to use OpenSSL instead
of GNUtls. Generally, it is not a good idea to mix
packages and ports. Let’s use the portmaster
method as above.

root@laertes:~# cd /usr/ports

root@laertes:/usr/ports# portmaster
security/openssl

11

Next, we will generate a new SSL key and prepare a
certificate signing request (CSR) file to be sent to a
Certification Authority (CA) of your choice for
signature:

root@laertes~# cd /usr/local/etc

root@laertes~# openssl req -sha512 -out
ldap.example.com.csr -new -newkey rsa:4096 -nodes
-keyout ldap.example.com.key

Afterward, we will also need to generate the required
Diffie-Helmann (DH) parameters file:

root@laertes~# openssl dhparam -out
/usr/local/etc/dhparam.pem 4096

Once all of the required packages have been
successfully installed, it is time to start with the
preliminary analysis of LDAP databases architecture.
Before starting our OpenLDAP server, edit
/etc/rc.conf file and add the following entries to
enable OpenLDAP on our FreeBSD system:

slapd_enable="YES"

slapd_flags='-h
"ldapi://%2fvar%2frun%2fopenldap%2fldapi/
ldap://0.0.0.0/"'

slapd_sockets="/var/run/openldap/ldapi"

slapd_cn_config=”YES”

Please note that by default, the
/usr/local/etc/rc.d/slapd script starts slapd(8) using
only the static configuration file slapd.conf instead of
our OLC-based configuration at
/usr/local/etc/openldap/slapd.d/ directory. Due to
this, you must take care not to forget to add the
corresponding entry for slapd_cn_config to
/etc/rc.conf.

If you want to use LDAP/S, modify the slapd_flags
line above by adding a ldaps:/// URI as shown
below:

12

Figure 3: OpenSSL portsmaster configuration dialog

slapd_flags='-h
"ldapi://%2fvar%2frun%2fopenldap%2fldapi/ ldap:///
ldaps:///"'

The OpenLDAP server daemon slapd(8) defaults to
looking for a text configuration file named slapd.conf
placed in /usr/local/etc/openldap/. This file also
needs to be updated to select whichever database
backend you would like to use for your data, and to
make use of the `mdb` backend as we have, find and
uncomment the following entry:

moduleload back_mdb

Now, to make use of SASL authentication for LDAP,
you must generate a root password by using the
slappasswd(1) command:

root@laertes:/usr/ports # slappasswd -h "{SSHA}"

New password:

Re-enter new password:

{SSHA}bNTVGLTAytavPx55XTSE2dEs2j10An18

This password shall be included at the end of
slapd.conf file:

root@laertes:# echo “rootpw
{SSHA}bNTVGLTAytavPx55XTSE2dEs2j10An18” >>
/usr/local/etc/openldap/slapd.conf

and defining the BaseDN and the RootDN to be
used later on to deploy and administer LDAP
directories:

###

MDB database definitions

###

database mdb

maxsize 1073741824

suffix "dc=cae-hpc,dc=org"

rootdn "cn=admin,dc=cae-hpc,dc=org"

Cleartext passwords, especially for the rootdn,
should

be avoid. See slappasswd(8) and slapd.conf(5)
for details.

Use of strong authentication encouraged.

rootpw secret

The database directory MUST exist prior to
running slapd AND

should only be accessible by the slapd and slap
tools.

Mode 700 recommended.

directory /var/db/openldap-data

Indices to maintain

index objectClass eq

olcDbIndex: uidNumber eq

olcDbIndex: uniqueMember eq

olcDbIndex: gidNumber eq

olcDbIndex: cn eq

olcDbIndex: memberUid eq

Also use the script to start the slapd(8) daemon:

root@laertes:~ # /usr/local/etc/rc.d/slapd start

Starting slapd.

Now, the OpenLDAP server becomes active and
ready to be populated with our data. However,
before starting with it, let us take some time to
examine LDAP taxonomy to introduce the new
approach for configuring LDAP servers: the
OpenLDAP Online Configuration (OCL).

LDAP Configuration

A more complex solution to handle NIS+ based upon
LDAP servers requires modifying the slapd.conf file
as follows:

include /usr/local/etc/openldap/schema/core.schema

include
/usr/local/etc/openldap/schema/cosine.schema

include /usr/local/etc/openldap/schema/corba.schema

include
/usr/local/etc/openldap/schema/inetorgperson.schema

include /usr/local/etc/openldap/schema/nis.schema

include
/usr/local/etc/openldap/schema/collective.schema

include
/usr/local/etc/openldap/schema/openldap.schema

13

include
/usr/local/etc/openldap/schema/duaconf.schema

include
/usr/local/etc/openldap/schema/dyngroup.schema

include /usr/local/etc/openldap/schema/misc.schema

include /usr/local/etc/openldap/schema/pmi.schema

include
/usr/local/etc/openldap/schema/ppolicy.schema

pidfile /var/run/openldap/slapd.pid

argsfile /var/run/openldap/slapd.args

logfile /var/log/slapd.log

loglevel 256

modulepath /usr/local/libexec/openldap

moduleload back_mdb

disallow bind_anon

require authc

database mdb

suffix "dc=example,dc=org"

rootdn "cn=admin,dc=example,dc=org"

directory /var/db/openldap-data

maxsize 1073741824

access to attrs=userPassword

 by self write

 by anonymous auth

 by dn.base="cn=admin,dc=example,dc=org"
write

 by * none

access to *

 by self write

 by dn.base="cn=admin,dc=example,dc=org"
write

 by * read

Indices to maintain

index objectClass eq

index uid eq

index uidNumber eq

index uniqueMember eq

index gidNumber eq

index cn eq

index memberUid eq

rootpw {SSHA}A6ia1SPQlY4J5qWBUkPg1qqiwZHrL0mb

overlay memberof

memberof-dangling drop

memberof-refint TRUE

Traditionally, text files have been the way of setting
up configuration for server daemons in Unix world.
However, OpenLDAP 2.4 introduces a new way to
perform this configuration using Online
Configuration. Online Configuration uses an existing
LDAP database to store these settings. The
instrument used are special text files named LDAP
Interchange Format (LDIF) files, and this new
procedure of configuring and defining everything in
OpenLDAP servers is known as OpenLDAP Online
Configuration (OCL) method.

OpenLDAP Online Configuration
(OCL)

Conventionally, OpenLDAP was configured using
text files in a static way. In this case, slapd.conf file
was used by default. Beside this method of
configuring, OpenLDAP 2.3 and later releases also
support a new dynamic and online approach of
configuring LDAP known as On-Line Configuration
(OLC). OLC will be used in this article.

OCL represents OpenLDAP server configuration as a
tree (DIT) whose rootDN is the entity named
cn=config. A more detailed picture of LDAPv3
organisation using Online Configuration (OLC) is
depicted in Illustration 4.

14

Figure 4: OpenLDAP cn=config DIT Hierarchy

LDAP servers store information in hierarchical
structures named Directory Information Trees (DIT).
Additionally, in contrast to the former text-based
configuration approach, OpenLDAP v2.4
incorporates OpenLDAP Online Configuration (OCL)
which is slightly different from the former method.

All DITs are held by a super-structure named Root
DSE. DSE stands for DSA Specific Entry and it acts
as a management or control entity.

Recall the slapd.conf file we wrote in the previous
section, its alternative OCL formulation is as shown
below:

a) Part I. Global cn=config configuration

dn: cn=config

objectClass: olcGlobal

cn: config

#

#

Define global ACLs to disable default read
access.

#

olcArgsFile: /var/db/run/slapd.args

olcPidFile: /var/db/run/slapd.pid

#

Log level

#

olcLogLevel: -1

#

Do not enable referrals until AFTER you have a
working directory

service AND an understanding of referrals.

#olcReferral: ldap://root.openldap.org

#

Sample security restrictions

Require integrity protection (prevent
hijacking)

Require 112-bit (3DES or better) encryption
for updates

Require 64-bit encryption for simple bind

#olcSecurity: ssf=1 update_ssf=112 simple_bind=64

b) Part II. Dynamic Modules load

LMDB backend does not use caching. Moreover, it
does not have special tuning needs to achieve a
good performance, apart from index rebuilding.
Therefore, LMDB is the recommended primary
backend to replace the Berkeley DB backend, and,
we shall select it for our OpenLDAP server
configuration.

#

Load dynamic backend modules:

#

dn: cn=module,cn=config

objectClass: olcModuleList

cn: module

olcModulepath: /usr/local/libexec/openldap

#olcModuleload: back_bdb.la

#olcModuleload: back_hdb.la

#olcModuleload: back_ldap.la

#olcModuleload: back_passwd.la

#olcModuleload: back_shell.la

15

olcModuleload: back_mdb.la

c) Part III. Schema load

dn: cn=schema,cn=config

objectClass: olcSchemaConfig

cn: schema

include:
file:///usr/local/etc/openldap/schema/core.ldif

include:
file:///usr/local/etc/openldap/schema/cosine.ldif

include:
file:///usr/local/etc/openldap/schema/inetorgperson
.ldif

d) Part IV. Frontend Database

dn: olcDatabase=frontend,cn=config

objectClass: olcDatabaseConfig

objectClass: olcFrontendConfig

olcDatabase: frontend

#

Sample global access control policy:

Root DSE: allow anyone to read it

Subschema (sub)entry DSE: allow anyone to
read it

Other DSEs:

Allow self write access

Allow authenticated users read
access

Allow anonymous users to
authenticate

#

#olcAccess: to * by * read

olcAccess: to dn.base="" by * read

olcAccess: to dn.base="cn=Subschema" by * read

olcAccess: to * by self write by users read by
anonymous auth

e) Part V. MDB Database Backend

dn: olcDatabase=mdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcMdbConfig

olcDatabase: mdb

olcSuffix: dc=bsd-online,dc=org

olcRootDN: cn=admin,dc=bsd-online,dc=org

Cleartext passwords, especially for the rootdn,
should

be avoided. See slappasswd(8) and
slapd-config(5) for details.

Use of strong authentication encouraged.

olcRootPW: {SSHA}jCgbLiQs8v9kYwKpLAI6oiHPI8ZZwzca

The database directory MUST exist prior to
running slapd AND

should only be accessible by the slapd and slap
tools.

Mode 700 recommended.

olcDbDirectory: /var/db/openldap-data

Indices to maintain

olcDbIndex: objectClass eq

olcDbIndex: default pres,eq

olcDbIndex: uid

olcDbIndex: cn,sn pres,eq,sub

The five parts of the listings above may be joined in
a single LDIF file paying attention to separate all DN
using empty lines.

Eventually, to perform the initial load of slapd(8)
daemon, just create a new directory to store its
databases and start loading the previous LDIF file:

root@laertes:~ # mkdir
/usr/local/etc/openldap/slapd.d/

root@laertes:~ # slapadd -F
/usr/local/etc/openldap/slapd.d/ -n 0 -l slapd.ldif

As a result, the directory slapd.d is populated with a
subdirectories tree starting with cn=config/ and its
associated LDIF file:

root@laertes:/usr/local/etc/openldap/slapd.d # ls
-R

cn=config cn=config.ldif

16

./cn=config:

cn=module{0}.ldif cn=schema.ldif
olcDatabase={0}config.ldif

cn=schema olcDatabase={-1}frontend.ldif
olcDatabase={1}mdb.ldif

./cn=config/cn=schema:

cn={0}core.ldif cn={1}cosine.ldif
cn={2}inetorgperson.ldif

In the event an error occurs, it is possible to clean up
all OpenLDAP configuration and start from scratch
by executing the commands below:

cd /usr/local/etc/openldap/

rm -fr slapd.d/*

../rc.d/slapd stop

rm -fr /var/db/openldap-data/*

.# ./rc.d/slapd start

However, it is possible to convert a static
slapd.conf file to the alternative OCL
configuration directories tree using the slaptest(8)
tool:

root@laertes:/usr/local/etc/openldap# slaptest -f
slapd.conf -F slap.conf.d/

For a more-in-depth view on slapd(8) configuration
using OCL, check the slapd-config(5) manual page
for an accurate description of the existing backends.

Navigating across LDAP Server
Hierarchy. Search Patterns

According to RFC 1558, there are three types of
search scopes set up in the tree hierarchy defined in
every LDAP server that are used by ldapsearch(1)
command:

• Base

• One-Level

• Sub-Tree

Your selection will depend on whether you are diving
in the top-level tree node (Base), descent to the first
immediate level of the tree hierarchy (One-Level) or

diving into the whole tree hierarchy as it will be seen
in the following examples:

a) Root DSE Entry

dn:

structuralObjectClass: OpenLDAProotDSE

configContext: cn=config

namingContexts: dc=bsd-online,dc=org

supportedControl: 1.3.6.1.4.1.4203.1.9.1.1

supportedControl: 2.16.840.1.113730.3.4.18

supportedControl: 2.16.840.1.113730.3.4.2

supportedControl: 1.3.6.1.4.1.4203.1.10.1

supportedControl: 1.3.6.1.1.22

supportedControl: 1.2.840.113556.1.4.319

supportedControl: 1.2.826.0.1.3344810.2.3

supportedControl: 1.3.6.1.1.13.2

supportedControl: 1.3.6.1.1.13.1

supportedControl: 1.3.6.1.1.12

supportedExtension: 1.3.6.1.4.1.4203.1.11.1

supportedExtension: 1.3.6.1.4.1.4203.1.11.3

supportedExtension: 1.3.6.1.1.8

supportedFeatures: 1.3.6.1.1.14

supportedFeatures: 1.3.6.1.4.1.4203.1.5.1

supportedFeatures: 1.3.6.1.4.1.4203.1.5.2

supportedFeatures: 1.3.6.1.4.1.4203.1.5.3

supportedFeatures: 1.3.6.1.4.1.4203.1.5.4

supportedFeatures: 1.3.6.1.4.1.4203.1.5.5

supportedLDAPVersion: 3

supportedSASLMechanisms: SCRAM-SHA-1

supportedSASLMechanisms: GSSAPI

supportedSASLMechanisms: GSS-SPNEGO

supportedSASLMechanisms: DIGEST-MD5

supportedSASLMechanisms: CRAM-MD5

supportedSASLMechanisms: NTLM

entryDN:

subschemaSubentry: cn=Subschema

b) Querying DITs managed by LDAP

The base entry of each DIT is available through the
namingContexts attribute:

17

root@laertes:~ # ldapsearch -H ldap:// -x -s base
-b "" -LLL "namingContexts"

dn:

namingContexts: dc=bsd-online,dc=org

c) Querying DITs used for LDAP Configuration

root@laertes:~ # ldapsearch -H ldap:// -x -s base
-b "" -LLL "ConfigContext"

dn:

configContext: cn=config

d) Accessing Configuration DITs

To see all the contents of the main configuration DIT
and schemas loaded, run the ldapsearch command
as shown below:

root@laertes:~ # ldapsearch -Y EXTERNAL -H ldap:///
-b cn=config

dn: cn=config

objectClass: olcGlobal

cn: config

olcArgsFile: /var/run/openldap/slapd.args

olcPidFile: /var/run/openldap/slapd.pid

olcTLSCACertificatePath: /etc/openldap/certs

olcTLSCertificateFile: /etc/openldap/certs/cert.pem

olcTLSCertificateKeyFile:
/etc/openldap/certs/priv.pem

olcLogLevel: -1

dn: cn=schema,cn=config

objectClass: olcSchemaConfig

cn: schema

olcObjectIdentifier: OLcfg 1.3.6.1.4.1.4203.1.12.2

olcObjectIdentifier: OLcfgAt OLcfg:3

olcObjectIdentifier: OLcfgGlAt OLcfgAt:0

olcObjectIdentifier: OLcfgBkAt OLcfgAt:1

olcObjectIdentifier: OLcfgDbAt OLcfgAt:2

olcObjectIdentifier: OLcfgOvAt OLcfgAt:3

olcObjectIdentifier: OLcfgCtAt OLcfgAt:4

olcObjectIdentifier: OLcfgOc OLcfg:4

olcObjectIdentifier: OLcfgGlOc OLcfgOc:0

olcObjectIdentifier: OLcfgBkOc OLcfgOc:1

olcObjectIdentifier: OLcfgDbOc OLcfgOc:2

olcObjectIdentifier: OLcfgOvOc OLcfgOc:3

olcObjectIdentifier: OLcfgCtOc OLcfgOc:4

olcObjectIdentifier: OMsyn
1.3.6.1.4.1.1466.115.121.1

..............................

objectClass: olcDatabaseConfig

objectClass: olcFrontendConfig

olcDatabase: {-1}frontend

dn: olcDatabase={0}config,cn=config

objectClass: olcDatabaseConfig

olcDatabase: {0}config

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=ext
ernal

 ,cn=auth" manage by * none

dn: olcDatabase={1}monitor,cn=config

objectClass: olcDatabaseConfig

olcDatabase: {1}monitor

olcAccess: {0}to * by
dn.base="gidNumber=0+uidNumber=0,cn=peercred,cn=ext
ernal

 ,cn=auth" read by
dn.base="cn=admin,dc=bsd-online,dc=org" read by *
none

dn: olcDatabase={2}hdb,cn=config

objectClass: olcDatabaseConfig

objectClass: olcHdbConfig

olcDatabase: {2}hdb

olcDbDirectory: /var/lib/ldap

olcDbIndex: objectClass eq,pres

olcDbIndex: ou,cn,mail,surname,givenname
eq,pres,sub

olcSuffix: dc=bsd-online,dc=org

18

olcRootDN: cn=admin,dc=bsd-online,dc=org

olcRootPW: {SSHA}wd1zFsTyEDMtFqvzPahzSzVU0bOKicIN

A short look at the DN managed by DIT
Configuration Entry may be displayed here:

root@laertes:~# ldapsearch -H ldap:// -Y EXTERNAL
-b "cn=config" -LLL -Q dn

dn: cn=config

dn: cn=module{0},cn=config

dn: cn=schema,cn=config

dn: cn={0}core,cn=schema,cn=config

dn: cn={1}cosine,cn=schema,cn=config

dn: cn={2}nis,cn=schema,cn=config

dn: cn={3}inetorgperson,cn=schema,cn=config

dn: olcBackend={0}mdb,cn=config

dn: olcDatabase={-1}frontend,cn=config

dn: olcDatabase={0}config,cn=config

dn: olcDatabase={1}mdb,cn=config

And the most important thing, where the slapd(8)
server information is stored:

root@laertes2:~# ldapsearch -H ldapi:// -Y EXTERNAL
-b "cn=config" -LLL -Q -s base

dn: cn=config

objectClass: olcGlobal

cn: config

olcArgsFile: /var/run/openldap/slapd.args

olcPidFile: /var/run/openldap/slapd.pid

olcTLSCACertificatePath: /etc/openldap/certs

olcTLSCertificateFile: /etc/openldap/certs/cert.pem

olcTLSCertificateKeyFile:
/etc/openldap/certs/priv.pem

olcLogLevel: -1

For advanced users, to verify the current status of
LDAP SSL/TLS server, GNU TLS provides an easy
way to check if everything is all right:

root@laertes:~# gnutls-cli-debug -p 389 localhost

GnuTLS debug client 3.3.24

Checking localhost:636

unknown protocol ldaps

 for SSL 3.0 (RFC6101)
support... yes

 whether we need to disable
TLS 1.2... no

 whether we need to disable
TLS 1.1... no

 whether we need to disable
TLS 1.0... no

 whether %NO_EXTENSIONS is
required... no

 whether %COMPAT is
required... no

 for TLS 1.0 (RFC2246)
support... yes

 for TLS 1.1 (RFC4346)
support... yes

 for TLS 1.2 (RFC5246)
support... yes

 for certificate
chain order... sorted

 for safe renegotiation (RFC5746)
support... yes

 for Safe renegotiation support
(SCSV)... yes

 for heartbeat (RFC6520)
support... no

 for version rollback bug in
RSA PMS... dunno

 for version rollback bug in
Client Hello... no

 whether the server ignores the RSA PMS
version... yes

 whether small records (512 bytes) are
accepted... yes

 whether cipher suites not in SSL 3.0 spec are
accepted... yes

whether a bogus TLS record version in the client
hello is accepted... yes

 whether the server understands TLS closure
alerts... partially

19

 whether the server supports session
resumption... yes

 for anonymous authentication
support... no

 for ephemeral Diffie-Hellman
support... yes

 for ephemeral EC Diffie-Hellman
support... yes

 ephemeral EC Diffie-Hellman
group info... SECP256R1

 for AES-128-GCM cipher (RFC5288)
support... yes

 for AES-128-CBC cipher (RFC3268)
support... yes

 for CAMELLIA-128-GCM cipher (RFC6367)
support... no

 for CAMELLIA-128-CBC cipher (RFC5932)
support... no

 for 3DES-CBC cipher (RFC2246)
support... yes

 for ARCFOUR 128 cipher (RFC2246)
support... yes

 for MD5 MAC
support... yes

 for SHA1 MAC
support... yes

 for SHA256 MAC
support... yes

 for ZLIB compression
support... no

 for max record size (RFC6066)
support... no

 for OCSP status response (RFC6066)
support... no

 for OpenPGP authentication (RFC6091)
support... no

Alternatively, from another remote computer with
network access to our LDAP server:

root@laertes2:/etc/default# nmap -Pn -p T:636
--script ssl-enum-ciphers localhost

Starting Nmap 6.40 (http://nmap.org) at
2017-10-03 12:12 CEST

Nmap scan report for localhost (127.0.0.1)

Host is up (690s latency).

Other addresses for localhost (not scanned):
127.0.0.1

PORT STATE SERVICE

636/tcp open ldapssl

| ssl-enum-ciphers:

| TLSv1.2:

| ciphers:

| TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA - strong

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA - strong

| TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 -
strong

| TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 -
strong

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA - strong

| TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 -
strong

| TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 –
strong

At this point, the configuration of our OpenLDAP
server running on FreeBSD is complete, and it is
possible to perform some queries to check the
accuracy of its contents

Conclusions and Remarks

While operating an OpenLDAP server can seem
tricky at first, getting to know the configuration DIT
and how to find meta-data within the system can
help you hit the ground running. Modifying the
cn=config DIT with LDIF files can immediately affect
the running system. Likewise, configuring the system
via a DIT allows you to potentially set up remote
administration using only LDAP tools. This means
that you can separate LDAP administration from
server administration. Directory Services are a
common mean to provide centralised management
for an heterogeneous environment in which coexist
different platform architectures and operating
systems, which makes this subject specially relevant
for corporate applications. Furthernore, most of the
activities described in this part may be applied to
other Unix-like systems in a straightforward way.

20

For this reason, the second part of this serie will
focus in one of the most typical application of LDAP
which is the embedding of NIS+ tables onto a
directory structure using FreeBSD.

Acronyms and Abbreviations

DSA	 Directory Specific Agent
DIT	 Directory Information Tree
DSE	 DSA Specific Entry
OCL	 OpenLDAP Online Configuration
DN	 Distinguished Name
RDN	 Relative Distinguished Name
LDIF	 LDAP Data Interchange Format
LDAP	Lightweight Directory Access Protocol
NSS	 Name Service Switch
PAM	 Pluggable Authentication Modules
SSL	 Secure Sockets Layer
TLS	 Transport Layer Security
SASL	Simple Authentication and Security Layer
OID	 Object Identifier
MDB	 Memory-Mapped Database
LMDB Lighting Memory-Mapped Databases
YP	 Yellow Pages

21

Meet the Author

José B. Alós has developed an important part of
his professional career since 1999 as an EDS
employee, as a UNIX System Administrator,
mainly focused on SunOS/Solaris, BSD and
GNU/Linux and High-Availability solutions for
industry, communications services and banking.

In 2007 he joined EADS Defense and Security, as
the person responsible for providing support for
end-users in aircraft engineering departments for
long-term projects. These days his professional
career has moved to High-Performance
Computing and Simulation area within Airbus
Group.

He was also Assistant Professor in the
Universidad de Zaragoza (Spain), and his
academic background includes a PhD in Nuclear
Engineering and three MsC in Electrical and
Mechanical Engineering, Theoretical Physics and
Applied Mathematics.

References and Bibliography

http://www.nlc-bnc.ca/publications/1/p1-244-e.html Directories and X.500: An Introduction
Timothy A.
Howes, Gordon S. Good, Mark Smith; Macmillan
Publishing, USA

Understanding and Deploying LDAP Directory Services

https://tools.ietf.org/search/rfc1558 RFC1558. A String Representation of LDAP Search FIlters
https://tools.ietf.org/search/rfc2222 RFC 2222. Simple Authentication and Security Layer

(SASL)
https://tools.ietf.org/search/rfc6101 RFC6101. The Secure Sockets Layer (SSL) Protocol

Version 3.0
http://www.openldap.org/ OpenLDAP Home Page
http://www.penldap.org/docs/admin24/ OpenLDAP 2.4 Administration's Guide
http://phpldapadmin.sourceforge.net PhpLDAPadmin Home Page
h t t p s : / / w w w. f r e e b s d . o rg / re l e a s e s / 1 1 . 1 R /
announce.html

FreeBSD 11.1 Release Home Page

https://www.digitalocean.com/community/tutorials/
how-to-install-and-manage-ports-on-freebsd-10-1

Howto Install and Manage Ports of FreeBSD 10.1

FREEBSD

In previous issue of BSD Magazine (Vol 11 No 06), I
explained how to install Fluentd from source and
from ports. I gave simple example how to configure
it and in this article, I’ll explain in detail how to
collect our logs in the server then forward and
process these logs so we can have a better and
meaningful information. I’m collecting logs from
Suricata (https://suricata-ids.org), which is a
signature-based Intrusion Detection System (IDS)
like Snort. If you’d like to know more about Suricata,
check out its web site.

For this experiment, I’m using FreeBSD
10.4-RELEASE with 4 GB memory. First prepare the
Fluentd installation and next is install Suricata and
oinkmaster with ports as follows. Oinkmaster is a
tool for updating rules and signatures for Suricata.

 $ cd /usr/ports/security/suricata 
 $ sudo make install clean

 $ cd

/usr/ports/security/oinkmaster  
 $ sudo make install clean

Select OK or you can tick any configuration you
want. But for this experiment, just use the default
configuration. We can modify our configuration later

after we finish with installation and configuration. I’m
using Suricata version 4.0.0 from ports. Your
Suricata and oinkmaster configuration is located in
/usr/local/etc/suricata and /usr/local/etc/oinkmaster,
respectively. You need oinkmaster to update the
rules from Suricata. We need to configure
oinkmaster before we can start Suricata.

 $ cp

/usr/local/etc/oinkmaster.conf.sample
/usr/local/etc/oinkmaster.conf

Open file /usr/local/etc/oinkmaster.conf and add this
configuration.

 url =

http://rules.emergingthreats.net/open/s
uricata/emerging.rules.tar.gz

After we update the configuration from
oinkmaster.conf, we can check and download new
threats signatures. Use this command as follows.

$ sudo oinkmaster -C
/usr/local/etc/oinkmaster.conf
/usr/local/etc/suricata/rules

Next, enable the Suricata on boot by adding this
configuration in /etc/rc.conf.

22

Fluentd For Centralized
Logging II: Fluentd-UI and
Suricata IDS

https://suricata-ids.org
https://suricata-ids.org

 suricata_enable=”YES”  
 firewall_enable=”YES” 
 natd_enable=”YES”

We can then issue the command service suricata
start to start the daemon. Notice that we should see
information like this.

Starting suricata.  
 19/11/2017 -- 17:02:58 - <Notice>
- This is Suricata version 4.0.0
RELEASE

Double check with ps ax command and the logs in
/var/log/suricata/suricata.log. Next step is to
configure the existing Fluentd (for installation you
can check in our previous article). Fluentd comes
with a friendly user interface called fluentd-ui to
connect between fluentd, source and output. We
need to install it first using this command.

$ sudo gem install -V fluentd-ui

After installation of fluentd-ui finishes, start the
service. Default address and port for fluentd-ui are
0.0.0.0 and 9292. The user interface is web-based
so we can access it anywhere. Default login user is
“admin” with password “changeme” (without double
quotes). You have to change the default password.
After login we must define the PID file, log file and
config file for fluentd. Remember we have to put the
same location configuration file with existing fluentd
installation.

 PID file :

/var/log/fluentd/fluentd-ui/fluent.pid  
 Log file :

/var/log/fluentd/fluentd-ui/fluent.log  
 Config file :
/usr/local/etc/fluentd/fluent.conf

After configuring the pid, log, and conf files, we can
proceed to the dashboard. Using this interface we
can manage the fluentd service (start, stop, restart).
Press the “Add Source and Output” link on the left
dashboard. We can see the workflow from fluentd
and current settings from default configuration. In
the Source Group we have File, Syslog Protocol,
Monitoring Agent, HTTP, and Forwarding (receiving
from another fluentd). In the Output Group we have

stdout (log), Treasure Data, Amazon S3, MongoDB,
ElasticSearch, and Forwarding. We need to
configure two types of files. First is the source, from
which logs fluentd will read. Second is the output,
should we forward our output file to another
application or just put it in the database.

From this experiment, I’m using File (in_tail) as
source to read Suricata’s logs. For the output, I’m
using Elasticsearch. So we have to install
Elasticsearch plugin in the server. We can use
fluentd-ui plugin installation to install the
Elasticsearch plugin.

Fluentd is not used for analyzing the logs so we do
the analyzing process with another analytics engine.
We have Suricata running and we can see the logs
from /var/log/suricata. Back at the dashboard in
fluentd-ui, choose “Add Source and Output” and
choose “File” from the Source group. Choose the file
path information the same with Suricata logs.
Because we will record all logs from Suricata with
syslog format and json format, so we choose
suricata.log (/var/log/suricata/suricata.log) using
syslog format and events from suricata with json
format. Scroll down the fluentd-ui interface and we
see the contents from suricata.log like this.

20/11/2017 -- 03:16:38 - <Warning> -
[ERRCODE: SC_WARN_IPFW_UNBIND(86)] -
Unable to disable ipfw socket: Socket
is not connected

20/11/2017 -- 03:17:06 - <Notice> -
This is Suricata version 4.0.0 RELEASE

20/11/2017 -- 03:17:10 - <Notice> - all
3 packet processing threads, 4
management threads initialized, engine
started.

Press next button to select file format. There are
several formats, incuding syslog, nginx, json, and
csv. We pick syslog and for time_format we have to
match with the log from suricata.log. Notice that in
suricata.log we see the date and time as follows.

20/11/2017 -- 03:17:06 - <Notice> -
This is Suricata version 4.0.0 RELEASE

23

Next is tag we can just put “var.*” refers to which
directory suricata’s log located. Press Next button
once again and we have confirmation page. Press
“Update & Restart” button to finish the configuration
and restart fluentd. This is from my configuration.

<source>

 type tail

 path /log/suricata/suricata.log

 tag var.*

 format syslog

 time_format %d/%m/%%Y -- %H:%M:%S

 pos_file /tmp/fluentd--1511123793.pos

</source>

This input source only logs suricata service. You
have to create another input for Suricata events
(eve.json). Events from Suricata log is recorded using
json. This is why for this input source we use json as
a format. As for pos_file just leave it as default. The
pos_file tag acting as a record position from the log
file which is suricata.log. Press the Advanced
Settings and tick “Read from head” which means
fluentd will read the file log from the first line of the
log.

<source>

 type tail

 path /log/suricata/eve.json

 tag var.*

 format json

 time_key timestamp

 read_from_head true

 pos_file /tmp/fluentd--1511132923.pos

</source>

Now we configure our output plugin. Go to
dashboard again and choose in Output group

“Elasticsearch”. Assuming you have installed your
own Elasticsearch on a different server, you can
change host or any label with localhost below to
your own server name or IP address. Fill the form
and follow this configuration as follows.

<match **>

 type elasticsearch

 host localhost

 port 9200

 index_name via_fluentd

 type_name via_fluentd

 logstash_format false

 utc_index true

 hosts
http://elastic:changeme@localhost:9200

 include_tag_key false

</match>

Before your fluentd server can connect to your
Elasticsearch server, you have to create your own
index on your Elasticsearch server. This is how to
create an index called “via_fluentd” in Elasticsearch.
This name should be the same as the one specified
above in the Output configuration.

curl -XPUT
'localhost:9200/via_fluentd?pretty' -H
'Content-Type: application/json' -d'

{

 "settings" : {

 "index" : {

 "number_of_shards" : 3,

 "number_of_replicas" : 2

 }

 }

24

}

'

To test our configuration and make sure that fluentd
can connect to Elasticsearch, stop and start the
suricata service. In fluentd stdout, we should see
something like this.

2017-11-20 07:43:01 +0900 [info]: #0
fluentd worker is now running worker=0

2017-11-20 07:44:02 +0900 [info]: #0
Connection opened to Elasticsearch
cluster => {:host=>"localhost",
:port=>9200, :scheme=>"http",
:user=>"elastic",
:password=>"obfuscated"}

Now check your Elasticsearch server and send the
command below.

andrey@nada:~$ curl -XGET
'elastic:changeme@nada.clouds.web.id:92
00/_cat/count/via_fluentd?v&pretty'

Your Elasticsearch server should respond with
something like this.

epoch timestamp count

1511099729 13:55:29 4

This count is a prove that our fluentd successfully
sent the log into Elasticsearch server.

You can try browse your Elasticsearch server using
your browser using this address
http://localhost:9200/via_fluentd

It should work with json format output with
information taken from suricata and forwarded by
fluentd.

Conclusion

Fluentd is very modular and flexible. Almost all logs
from known applications can be processed and
forwarded. This makes fluentd very flexible and
make it easier for system administrator to manage
their logs system.

25

Meet the Author

Andrey Ferriyan is a writer, researcher and practitioner. Python and R enthusiasts.
Experiences in UNIX-like servers (GNU/Linux, FreeBSD and OpenBSD). Data
Scientist wannabe. Area of interests including Information Security, Machine
Learning and Data Mining.

Now He is a student at Keio University under LPDP (Indonesia Endowment Fund
for Education). He leads startup company in Indonesia called ATSOFT with my
friends.

http://www.lpdp.kemenkeu.go.id/en/
http://www.lpdp.kemenkeu.go.id/en/
http://atsoft.co.id/
http://atsoft.co.id/

FREEBSD

Here's how I deployed a website to FreeBSD on the
Google Cloud Platform. I set up HTTPS with free
Let's Encrypt (letsencrypt.org) TLS certificates for
both RSA and ECC, and set up automatic renewal of
the dual certificates.

None of this is difficult, but I discovered that some
steps aren't openly supported or well documented.
Specifically, running FreeBSD on Google’s IaaS or
Infrastructure as a Service cloud environment, and
automatically renewing dual RSA/ECC Let's Encrypt
certificates.

This article is aimed at people who are in a situation
similar to mine when I started. First, I’ll assume
you’re reasonably comfortable with FreeBSD — no
need to explain why it's a great choice for OS, or
how to use the pkg command and control the
Apache service.

Second, I expect that you're familiar with public
cloud concepts and terminology, but you don't
necessarily have any experience with Google's
specific offerings.

Are you still with me? Then let's get started!

Google Cloud Platform and its Free
Tier

The Google Compute Engine provides high
performance, and the price is certainly right! The
Free Tier includes several products that are always
free up to some usage limits, of course, with a low
cost beyond that. For details, see:
https://cloud.google.com/compute/

The Free Tier includes one VM with plenty of
horsepower for a website. Their f1-micro instance
gives you a single-core Intel Xeon 2.20 GHz CPU
with 614 MB of RAM. It's a shared-core machine,
and you get 20% of a virtual CPU all the time with
bursts up to 100%. After the first one, each
additional f1-micro machine costs just US$ 3.88 per
month.

The f1-micro VM comes with 30 GB of constant disk
storage based on locally attached solid-state drives.
That's right, the storage is all SSD, mechanical disks
aren't even a choice. Additional storage is US$ 0.04
per GB per month, although 30 GB was more than
enough for me.

26

FreeBSD, Google Cloud,
and Dual ECC/RSA  
Let's Encrypt Certificates

https://letsencrypt.org/
https://letsencrypt.org/

You get one static external IPv4 address. IPv6 is
currently only available when you are also using load
balancers, but they say general purpose IPv6 is set
for release. Google’s data centers have plenty of
bandwidth. Ingress traffic is unlimited, and most of
the first 1 GB egress traffic per month is free. Beyond
the first gigabyte of outbound traffic, the pricing is
complicated but quite cheap.

The first free gigabyte is to all destinations other than
Australia and China other than Hong Kong. It's US$
0.12 per GB to most of the world after the first free
gigabyte. All traffic to Australia is US$ 0.19/GB, and
all traffic to China other than Hong Kong is US$
0.23/GB.

Reserve an IP Address

Follow Google's instructions to specify your
geographic region. The Free Tier is only available in
some regions. My server is located in Oregon. Then,
follow their instructions to reserve an external IP
address. Once your VM is running and associated
with that address, you can go back and specify that it
should be static, not changing after a reboot.

Your initial steps are done through a web interface. I
have used the AWS or Amazon Web Services
dashboard on a number of projects. However, within
10 minutes of my first exposure to the Google Cloud
Platform dashboard, I found it much more intuitive
and informative.

Below is the view after the VM was running and using
the reserved IP address.

Set Up DNS

US$ 12 transfers a domain from your current
registrar to Google Domains, and adds 1 year of
registration. After that, it's US$ 12 per year. That's
low cost considering that Google's DNS service

provides great performance. Below is the Domains’
dashboard where I have registered cromwell-intl.com
by IP address and set up A and CNAME records. It's
very easy to use.

The A record for "@", means the domain itself and it
defines the IPv4 address.

The CNAME record specifies that
www.cromwell-intl.com is an alias, and the canonical
name is simply cromwell-intl.com.

Therefore, regardless of the user's assumption that
the name has the "www." or not, it resolves to the
same IP address. In a later step, I will configure
Apache to redirect all requests for the "www." version
to the simpler name. The search engines will see the
site as a single site, not a collection duplicated
across two hostnames.

Deploying the VM

There isn't a simple point-and-click method to choose
a FreeBSD VM image. It appears as if FreeBSD isn't
a choice! However, FreeBSD images are available
through the freebsd-org-cloud-dev project.

FreeBSD is supported on the Google Cloud Platform
because it works just fine. There isn't support in the
form of assistance, they don't make it as simple as
other operating systems. But there is an easy
command-line way to deploy it.

27

https://cromwell-intl.com/
https://cromwell-intl.com/
http://www.cromwell-intl.com
http://www.cromwell-intl.com
https://cromwell-intl.com/
https://cromwell-intl.com/

First, install the Google Cloud SDK package on your
local system. There is a google-cloud-sdk FreeBSD
package, or get it for various operating systems from:
https://cloud.google.com/sdk/downloads

This gives you the gcloud command-line interface
set-up to run under Bash. I found gcloud much easier
to set up and use than the corresponding AWS
command-line toolkit. Once the server is deployed,
you can connect with SSH, and you seldom need
gcloud.

Start by using gcloud to see the list of images
currently available from the FreeBSD project:

$ gcloud compute images list \  
 --project freebsd-org-cloud-dev \ 
 --no-standard-images

That's a lot! Let's narrow that down to the stable
RELEASE versions:

$ gcloud compute images list \  
 --project freebsd-org-cloud-dev \ 
 --no-standard-images | grep -i release

Now, deploy your FreeBSD server. Change the
version as needed, and change web to your desired
hostname. The 30 GB disk size is the maximum size
for the free tier. It was much more than enough to
hold my site.

$ gcloud compute instances create web \  
 --image-project=freebsd-org-cloud-dev \ 
 --image=freebsd-11-1-release-amd64 \  
 --boot-disk-size=30GB \ 
 --boot-disk-type=pd-standard \ 
 --machine-type=f1-micro

Now you can start the VM through the web
dashboard. It's running!

Set Up SSH

Verify that the virtualized firewall will pass inbound
SSH. Let's go ahead and add HTTP and HTTPS, and
remove the unneeded rule allowing RDP. We'll also
make sure that ICMP is allowed, so we can do simple
ping tests.

Follow Google's instructions to add SSH keys:

https://cloud.google.com/compute/docs/instances/ad
ding-removing-ssh-keys

Once I get a basic .ssh/authorized_keys file in place,
I do everything with ssh and scp. The web interface
is just for general monitoring and, maybe, rebooting.

Your user can become root with sudo bash, and you
can make further changes. Do not assign passwords
to any user, stick with cryptographic authentication
over SSH.

If you add a user to group wheel, they can become
root by simply running the command su because of
the contents of /etc/pam.d/su.

Networking

The Ethernet interface will be vtnet0. Your server is in
a private network, a VPC or Virtual Private Cloud,
something like the 10.138.0.0/24 network with just
your server and a (virtual) router. The router runs
NAT, mapping your server to your external static IP
address.

28

https://cloud.google.com/sdk/downloads
https://cloud.google.com/sdk/downloads
https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys
https://cloud.google.com/compute/docs/instances/adding-removing-ssh-keys

Packages

The FreeBSD image comes with several packages
added to the basic install. I found these 22 packages
on the freshly deployed image:

bash, ca_root_nss, curl,
firstboot-freebsd-update, firstboot-growfs,
flock, gettext-runtime, google-cloud-sdk,
google-daemon, google-startup-scripts,
indexinfo, libffi, libnghttp2, panicmail,
pkesh, pkg, python, python2, python27,
readline, sudo.

I first installed all available updates for the existing
packages. Then, I added bind-tools and lsof for
troubleshooting, and vim for my personal preference.

Thereafter, I added the packages needed for
Apache/PHP web service: apache24 and
mod_php71 and their dependencies.

Correcting Clock Problems

By now, the system has been running long enough
that I noticed the huge clock drift. Within a minute,
the system clock drifts by several seconds. This is a
known issue with FreeBSD running on Linux/KVM.
Let's see what the virtualized platform provides:

$ dmesg | less  
[... output deleted ...]  
random: unblocking device.  
ioapic0 <Version 1.1> irqs 0-23 on motherboard 
Timecounter "TSC" frequency 1837606598 Hz

quality 1000  
random: entropy device external interface 
[... output deleted ...]  
atrtc0: <AT realtime clock> port
0x70-0x71,0x72-0x77 irq 8 on acpi0  
Event timer "RTC" frequency 32768 Hz quality 0 
Timecounter "ACPI-fast" frequency 3579545 Hz

quality 900  
acpi_timer0: <24-bit timer at 3.579545MHz>

port 0xb008-0xb00b on acpi0  
[... output deleted ...]  
attimer0: <AT timer> at port 0x40 on isa0 
Timecounter "i8254" frequency 1193182 Hz
quality 0  
attimer0: Can't map interrupt.  
ppc0: cannot reserve I/O port range  
Timecounters tick every 1.000 msec  
[... output deleted ...]

You want to use the ACPI-fast device:

sysctl kern.timecounter.hardware  
kern.timecounter.hardware: TSC  
sysctl kern.timecounter.choice  
kern.timecounter.choice: i8254(0)

ACPI-fast(900) TSC(1000) dummy(-1000000)  
sysctl kern.timecounter.hardware=ACPI-fast  
kern.timecounter.hardware: TSC -> ACPI-fast

I then added a line to each of /etc/sysctl.conf and
/etc/rc.conf.

$ grep timecounter /etc/sysctl.conf  
kern.timecounter.hardware=ACPI-fast  
grep ntpd /etc/rc.conf  
ntpd_enable=YES  
ntpdate_enable=YES

I rebooted to test, and now the clock was correct and
stayed spot-on.

Set Up Apache

I set-up Apache 2.4 with PHP 7.1, and got the site
served out over HTTP. This is well-documented
elsewhere. So let's move to the next step.

Public-Key Security

Asymmetric cryptography, also called public-key
cryptography, bases its security on a trapdoor
function. The trapdoor function is easy to compute in
one direction, but difficult to compute in the opposite
direction. RSA, which was developed in the late
1970s, relies on the difficulty of factoring the product
of two very large prime numbers. It is easy to multiply
integers, even the ones with hundreds of digits.
However, it is impractically difficult to start with such
a product and figure out which two large prime
numbers went into it.

Then people got worried: what if someone develops
a general-purpose quantum computer? Shor's
Algorithm could quickly factor very large numbers if
you run it on such a platform.

Around this time, people started using mobile devices
for Internet access. However, smartphones with fast

29

multi-core CPUs had not yet been developed. We're
talking about early BlackBerry days.

So, Elliptic Curve Cryptography or ECC suddenly
became popular. Its trapdoor function is based on a
discrete logarithm, entirely different from RSA's
factoring. Analysis by NSA and NIST showed that
ECC provides same security with much smaller keys
than RSA, requiring much less computation.

So, two advantages: higher performance, and
perceived resistance to sudden obsolescence when
quantum computers appear. Certificate authorities
began issuing dual certificates for sites: one based
on ECC which newer clients would prefer for
performance, and RSA as a fall-back.

Since then, cryptographers have discovered that
ECC will be just as susceptible as RSA to attack by
quantum computers. But ECC still has a performance
advantage.

In August 2015, the NSA announced that ECC wasn't
a backup for RSA when facing the threat of quantum
computing cryptanalysis, to the point that government
agencies and contractors considering a migration
from RSA to ECC shouldn't bother. They later
modified the page, and thereafter, took it down. See
the archived update here.

We need post-quantum or quantum-safe
asymmetric ciphers. Several families of Key
post-quantum cipher algorithms are being explored:
lattice-based cryptography, code-base cryptography,
multivariate polynomial cryptography, and others.
See the Post-Quantum Crypto conference series for
details.

To get back on track, ECC has a definite
performance advantage over RSA at the same
security levels. We want to support both.

TLS with Dual ECC/RSA Let's Encrypt
Certificates

Let's Encrypt (letsencrypt.org) is a certificate
authority founded by the Electronic Frontier
Foundation, the Mozilla Foundation, the University of
Michigan, Akamai Technologies, and Cisco
Corporation. They issue free TLS certificates that are

trusted by browsers. (Advanced note: these are DV
or Domain Verification certificates, not EV or
Extended Verification, limiting browsers' trust in them,
but the price is certainly right!)

Let's Encrypt certificates are only good for 90 days.
The short certificate lifetime makes automated
renewal important.

Yes, you can set up automated renewal of dual
ECC/RSA Let's Encrypt certificates! I found that
this wasn't documented very well. Google searches
lead to frequently-referenced blog postings about it
being impossible, or how there is an overly complex
kludge when working around it. Hence the main point
of this article is that it's not hard to figure out, and it's
quite easy to set it up once you know the trick

Creating the RSA Certificate

ACME, the Automated Certificate Management
Environment, is a protocol for interacting with the
Let's Encrypt CA. You use the certbot program to
carry out the various steps. Install the py27-certbot
package to get it.

Now you're ready to make your first certificate:

certbot certonly --webroot \  
 -w /usr/local/www/htdocs/ \  
 -d example.com -d www.example.com  

I deliberately provided the root location of the web
document, and listed the domain names. Yes, clients
will be redirected from www.example.com to
example.com as needed, but they must first make a
secure connection server and ask for the longer
name with "www.".

There is some narrative output. You are asked for an
email address in case they need to send you an
urgent renewal or security notice. You agree to the
terms of service, then answer whether it's OK to
share your email address with the EFF, and you are
done.

I didn't tell it anything about the cryptography, so it
generated and installed a 2048-bit RSA key pair.

What Did You Get?

30

https://web.archive.org/web/20160120060933/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://web.archive.org/web/20160120060933/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://en.wikipedia.org/wiki/Post-quantum_cryptography#Key_sizes
https://en.wikipedia.org/wiki/Post-quantum_cryptography#Key_sizes
https://en.wikipedia.org/wiki/Post-quantum_cryptography#Key_sizes
https://en.wikipedia.org/wiki/Post-quantum_cryptography#Key_sizes
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://www.pqcrypto.org/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

The key pair, certificate, and associated files have
been created and saved under
/usr/local/etc/letsencrypt. Let's see what files were
saved there.

cd /usr/local/etc/letsencrypt  
tree -F  
.  
|-- accounts/  
| |-- acme-staging.api.letsencrypt.org/  
| | `-- directory/  
| | `--
d72ae2a5cf968487add7cbdece6e3aab/  
| | |-- meta.json  
| | |-- private_key.json  
| | `-- regr.json  
| `-- acme-v01.api.letsencrypt.org/  
| `-- directory/  
| `--
5f78856fecb3b21a157f41d986716e2c/  
| |-- meta.json  
| |-- private_key.json  
| `-- regr.json  
|-- archive/  
| `-- example.com/  
| |-- cert1.pem  
| |-- chain1.pem  
| |-- fullchain1.pem  
| `-- privkey1.pem  
|-- csr/  
| `-- 0000_csr-certbot.pem  
|-- keys/  
| `-- 0000_key-certbot.pem  
|-- live/  
| `-- example.com/  
| |-- README  
| |-- cert.pem ->

../../archive/example.com/cert1.pem  
| |-- chain.pem ->

../../archive/example.com/chain1.pem  
| |-- fullchain.pem ->

../../archive/example.com/fullchain1.pem  
| `-- privkey.pem ->
../../archive/example.com/privkey1.pem  
`-- renewal/  
 `-- example.com.conf

 
14 directories, 18 files

Notice the directories archive, containing the key
files, and live, containing links to those files. We will
return to this detail in a bit.

Creating the ECC Certificate

Let’s now create an ECC private key and certificate.
We need a reasonably recent version of openssl.
Check what yours is capable of:

$ openssl ecparam -list_curves | less

I will use elliptic curve P-384, designated secp384r1,
as it is the strongest elliptic curve included in NSA
Suite B cryptography. See the U.S. NIST SP 800-57
"Recommendation for Key Management" for its
definition, and the following comparison of relative
strength against brute force attack:

Key Length in Bits for Approximately

Equal Resistance to Brute-Force

Attacks, per NIST/NSA

Security Symmetric Asymmetric Elliptic

Strength (3DES, AES) (RSA, DSA) Curve

80 80 1024 160

112 112 2048 224

128 128 3072 256

192 192 7680 384

256 256 15,360 512

The first time I used certbot, I let it generate an RSA
key pair. Since I need to generate an ECC
certificate-signing request, I’ll start by generating
an ECC private key:

$ openssl ecparam -genkey -name secp384r1 | openssl
ec -out ecc-privkey.pem

31

http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/cert1.pem
http://example.com/cert1.pem
http://example.com/chain1.pem
http://example.com/chain1.pem
http://example.com/fullchain1.pem
http://example.com/fullchain1.pem
http://example.com/privkey1.pem
http://example.com/privkey1.pem

Before generating the CSR or Certificate Signing
Request, I must slightly change the OpenSSL
configuration to enable multiple names, both with and
without "www.":

Edit /etc/ssl/openssl.cnf.

Find and uncomment the entry:

req_extensions = v3_req

Add a line below that:

subjectAltName = @alt_names

Add a new stanza at the end of the file:

Added

[alt_names]

DNS.1 = www.example.com

DNS.2 = example.com

I can now generate the CSR. It will ask you for a
2-letter country code, state or province, locality, and
so on.

$ openssl req -new -sha256 -key ecc-privkey.pem

-nodes -outform pem -out ecc-csr.pem  

Ask Let's Encrypt to generate a certificate. This time
we pass it our new CSR.

$ certbot certonly -w /usr/local/www/htdocs \ 
 -d example.com -d www.example.com \  
 --email bob.cromwell@comcast.net \  
 --csr ecc-csr.pem --agree-tos

This gives us three new files in the local directory:

0000_cert.pem = The certificate itself

0000_chain.pem = The signing chain

0001_chain.pem = The full chain including our certificate

Solving the Mystery — Automatically
Renewing Dual Certificates

It took some research after initial frustration to learn
that certbot is very fussy about file names when it
comes to renewal.

By default, it generates RSA keys with directory
archive/example.com containing the actual files, and
live/example.com containing symbolic links pointing
to them. You can rename the archive and live
directories, but the files must have specific
names.

The "archive" directory, or whatever you end up
naming it, must have files named precisely
cert1.pem, chain1.pem, fullchain1.pem, and
privkey1.pem.

The "live" directory, again possibly renamed, must
have symbolic links with those same names minus
the "1", precisely cert.pem, chain.pem, fullchain.pem,
and privkey.pem.

The automated RSA installation also created a
directory named renewal containing a configuration
file named for the domain plus ".conf".

First, I rearranged the existing hierarchy under
/usr/local/etc/letsencrypt.

Rename the existing "archive" and "live" directories
rsa-archive and rsa-live.

Recreate the symbolic links in rsa-live/example.com
to point to the relocated "archive" files.

Edit renewal/example.com.conf and make
corresponding changes to the paths.

Rename that file rsa-example.com.conf.

Verify that renewal still works:

certbot renew --dry-run

Next, create new directories ecc-archive and ecc-live,
each with a subdirectory named for the domain.
Then:

Move the ECC files I just created into the ecc-archive
area, changing the names as required.

Create the symbolic links under ecc-live.

Rename the RSA files in csr and keys, and move the
corresponding ECC files into those areas.

32

http://www.example.com/
http://www.example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

Copy the file in renewal to ecc-example.com.conf
and edit that new file so its contents refer to the ECC
files.

The result of all this is the following, where:

yellow indicates renamed files and changed file content,

green indicates (re)created symbolic links,

blue indicates new files and directories, and

grey indicates unchanged files

cd /usr/local/etc/letsencrypt  
tree -F  
.  
|-- accounts/  
| |-- acme-staging.api.letsencrypt.org/  
| | `-- directory/  
| | `-- d72ae2a5cf968487add7cbdece6e3aab/  
| | |-- meta.json  
| | |-- private_key.json  
| | `-- regr.json  
| `-- acme-v01.api.letsencrypt.org/  
| `-- directory/  
| `-- 5f78856fecb3b21a157f41d986716e2c/  
| |-- meta.json  
| |-- private_key.json  
| `-- regr.json  
|-- csr/  
| |-- ecc-csr.pem  
| `-- rsa-csr.pem  
|-- ecc-archive/  
| `-- example.com/  
| |-- cert1.pem  
| |-- chain1.pem  
| |-- fullchain1.pem  
| `-- privkey1.pem  
|-- ecc-live/  
| `-- example.com/  
| |-- cert.pem ->

../../ecc-archive/example.com/cert1.pem  
| |-- chain.pem ->

../../ecc-archive/example.com/chain1.pem  
| |-- fullchain.pem ->

../../ecc-archive/example.com/fullchain1.pem  
| `-- privkey.pem ->

../../ecc-archive/example.com/privkey1.pem  
|-- keys/  
| |-- ecc-privkey.pem  
| `-- rsa-privkey.pem  
|-- renewal/  
| |-- ecc-example.com.conf  
| `-- rsa-example.com.conf  

|-- rsa-archive/  
| `-- example.com/  
| |-- cert1.pem  
| |-- chain1.pem  
| |-- fullchain1.pem  
| `-- privkey1.pem  
`-- rsa-live/  
 `-- example.com/  
 |-- README  
 |-- cert.pem ->

../../rsa-archive/example.com/cert1.pem  
 |-- chain.pem ->

../../rsa-archive/example.com/chain1.pem  
 |-- fullchain.pem ->

../../rsa-archive/example.com/fullchain1.pem  
 `-- privkey.pem ->

../../rsa-archive/example.com/privkey1.pem  
 
18 directories, 29 files  

The automated renewal files now contain the
following:

cat renewal/ecc-example.com.conf  
renew_before_expiry = 30 days  
version = 0.18.2  
archive_dir =

/usr/local/etc/letsencrypt/ecc-archive/example.com  
cert =
/usr/local/etc/letsencrypt/ecc-live/example.com/cer
t.pem  
privkey =
/usr/local/etc/letsencrypt/ecc-live/example.com/pri

vkey.pem  
chain =
/usr/local/etc/letsencrypt/ecc-live/example.com/cha

in.pem  
fullchain =
/usr/local/etc/letsencrypt/ecc-live/example.com/ful

lchain.pem  
 
Options used in the renewal process  
[renewalparams]  
authenticator = webroot  
installer = None  
account = 5f78856fecb3b21a157f41d986716e2c  
webroot_path = /usr/local/www/htdocs,  
[[webroot_map]]  
www.example.com = /usr/local/www/htdocs  
example.com = /usr/local/www/htdocs  
 
cat renewal/rsa-example.com.conf  
renew_before_expiry = 30 days  
version = 0.18.2  
archive_dir =

33

http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-staging.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://acme-v01.api.letsencrypt.org/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/cert1.pem
http://example.com/cert1.pem
http://example.com/chain1.pem
http://example.com/chain1.pem
http://example.com/fullchain1.pem
http://example.com/fullchain1.pem
http://example.com/privkey1.pem
http://example.com/privkey1.pem
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/cert1.pem
http://example.com/cert1.pem
http://example.com/chain1.pem
http://example.com/chain1.pem
http://example.com/fullchain1.pem
http://example.com/fullchain1.pem
http://example.com/privkey1.pem
http://example.com/privkey1.pem
http://example.com/
http://example.com/
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://www.example.com/
http://www.example.com/
http://example.com/
http://example.com/

/usr/local/etc/letsencrypt/rsa-archive/example.com  
cert =
/usr/local/etc/letsencrypt/rsa-live/example.com/cer
t.pem  
privkey =
/usr/local/etc/letsencrypt/rsa-live/example.com/pri

vkey.pem  
chain =
/usr/local/etc/letsencrypt/rsa-live/example.com/cha

in.pem  
fullchain =
/usr/local/etc/letsencrypt/rsa-live/example.com/ful

lchain.pem  
 
Options used in the renewal process 
[renewalparams]  
authenticator = webroot  
installer = None  
account = 5f78856fecb3b21a157f41d986716e2c 
webroot_path = /usr/local/www/htdocs, 
[[webroot_map]]  
www.example.com = /usr/local/www/htdocs  
example.com = /usr/local/www/htdoc  

Now test this:

certbot renew --dry-run  

Did it work? Great!

Automated Renewal

Now, let's automate the renewal. Set up a crontab job
to run certbot in renewal mode twice a day. It won't
do anything until there are 30 days left. We'll do this
frequently so we can spot any problems quickly. Pick
random times:

crontab -l  
min hr day-of-month month day-of-week command 
44 4 * * * certbot renew > /root/certbot-output

2>&1  
44 16 * * * certbot renew > /root/certbot-output

2>&1  
cat /root/certbot-output  
Saving debug log to

/var/log/letsencrypt/letsencrypt.log  
Cert not yet due for renewal  
Cert not yet due for renewal  

Processing
/usr/local/etc/letsencrypt/renewal/rsa-example.com.

conf  

Processing
/usr/local/etc/letsencrypt/renewal/ecc-example.com.

conf  

The following certs are not due for renewal yet:  

/usr/local/etc/letsencrypt/rsa-live/example.com/ful

lchain.pem (skipped)  

/usr/local/etc/letsencrypt/ecc-live/example.com/ful

lchain.pem (skipped)  
No renewals were attempted.  

Unless you run certbot with the --force-renewal
option, it will wait until there are only 30 days left.

We can use the openssl tool to parse and display the
certificates.

openssl x509 -in ecc-live/example.com/cert.pem

-text -noout  
 
openssl x509 -in rsa-live/example.com/cert.pem
-text -noout

Enabling HTTPS With Those Dual
Certificates

Edit the httpd.conf configuration file and add the
following to the file, changing the hostname and file
system paths as needed. Make sure to use the file
fullchain.pem, which contains the full certificate
chain, and not cert.pem which has just your site's
certificate.

Put these directives at the global level:  
LoadModule ssl_module libexec/apache24/mod_ssl.so  
Listen 443  
 
Put these within individual VirtualHost stanzas  
if you are hosting several sites on one server.  
<VirtualHost *:443>  
 ServerName example.com  
 SSLEngine on  
 # ECC secp384r1  
 SSLCertificateFile
"/usr/local/etc/letsencrypt/ecc-live/example.com/fu

34

http://example.com/
http://example.com/
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/chain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://www.example.com/
http://www.example.com/
http://example.com/
http://example.com/
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/cert.pem
http://example.com/
http://example.com/
http://example.com/
http://example.com/
http://example.com/fullchain.pem
http://example.com/fullchain.pem

llchain.pem"  
 SSLCertificateKeyFile
"/usr/local/etc/letsencrypt/ecc-live/example.com/pr

ivkey.pem"  
 # RSA  
 SSLCertificateFile
"/usr/local/etc/letsencrypt/rsa-live/example.com/fu

llchain.pem"  
 SSLCertificateKeyFile
"/usr/local/etc/letsencrypt/rsa-live/example.com/pr

ivkey.pem"  
</VirtualHost>

Restart Apache, and verify that you can connect with
both HTTP and HTTPS.

Redirect to HTTPS without "www."

The goal is to accept all connections, redirecting all
of these:

http://example.com/some/path/

http://www.example.com/some/path/

https://www.example.com/some/path/

to this:

https://example.com/some/path/

Add the following to your .htaccess file in the root of
the web site. If the RewriteEngine line is already in
the file, don't duplicate it.

Remove "www." and redirect HTTP to HTTPS 
RewriteEngine on  
Use a standard variable and a tagged regular

expression to  
replace the URL with "https://", the host name,

and the  
path minus any leading "www.":  
RewriteCond %{HTTP_HOST} ^www\.(.*)$ [NC] 
RewriteRule ^(.*)$ https://%1/$1 [R=301,L] 
If they asked for the non-www name but with HTTP,

build a  
new HTTPS URL with the host name and the path: 
RewriteCond %{HTTPS} off  
RewriteRule ^(.*)$
https://%{HTTP_HOST}%{REQUEST_URI} [L,R=301]

Now test the various redirection cases.

Yes, I did it with the site-specific .htaccess file. I could
have instead done it with slightly different syntax in
the server-wide httpd.conf configuration file. For the

single site, given its size and traffic, I didn't see a big
advantage of one method over the other.

Improving the TLS Configuration

Apache has a good SSL/TLS how-to document:
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html

Even more useful, Mozilla has a configuration
generator:
https://mozilla.github.io/server-side-tls/ssl-config-gen
erator/

Select your server, its version, and your OpenSSL
versions, and lastly, select the security profile.

Which security profile should you use? It
depends...

Let's say you're setting up a server for use within
your organization, and you have full control of the
desktop systems and any portable laptops that could
be connected from outside. In that case, I
recommend the strictest "Modern" profile. All your
client machines will need to be fairly current, but that
should already be the case.

However, let's say that you want to be open to all
clients from the public. That's my situation. It would
be nice if everyone used up-to-date operating
systems and browsers, but I don't want to block or
even inconvenience people with outdated platforms.

I used the "Intermediate" profile as a starting point.
Here is what I added towards the end of the
httpd.conf configuration file, before and outside the
VirtualHost stanza. Hence it will apply to all virtually
hosted websites I eventually set up on the server.
The SSLCipherSuite line is enormously long. I
started with what Mozilla's "Intermediate" profile gave
me, and reordered that to put 3DES or "DES-CBC3"
at the end.

That provides 3DES as a fallback position for
connections from IE 8 on XP.

35

http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/fullchain.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/privkey.pem
http://example.com/some/path/
http://example.com/some/path/
http://www.example.com/some/path/
http://www.example.com/some/path/
https://www.example.com/some/path/
https://www.example.com/some/path/
https://example.com/some/path/
https://example.com/some/path/
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://mozilla.github.io/server-side-tls/ssl-config-generator/

TLS only, no SSL  
SSLProtocol all -SSLv2 -SSLv3  
Specify ciphers in a preferred order. I

reordered what the configuration  
generator gave me, putting 3DES ("DES-CBC3") at

the end.  
SSLCipherSuite
ECDHE-ECDSA-CHACHA20-POLY1305:[...much deleted, see

above]  
SSLHonorCipherOrder on  
Disable compression and session tickets 
SSLCompression off  
SSLSessionTickets off  
Enable OCSP Stapling  
LoadModule socache_shmcb_module

libexec/apache24/mod_socache_shmcb.so 
SSLUseStapling On  
SSLStaplingCache "shmcb:logs/ssl_stapling(32768)" 
Enable session resumption (caching) 
SSLSessionCache "shmcb:logs/ssl_scache" 
Insist on HSTS or HTTP Strict Transport Security 
Header always set Strict-Transport-Security
"max-age=31536000; includeSubDomains; preload"

And with that, an A+ evaluation from the Qualys
analyzer! See how your server scores at
www.ssllabs.com.

Monitoring The Dashboard

You can get a quick and clear overview of recent
server activity with the Google Cloud Platform
dashboard. That's "Home" in the 3-line menu at the
upper left in the GCP’s pages. You can monitor the
network traffic and CPU utilization, and keep an eye
on the month's billing so far, among other features.
Also, you can customize what you see here. I have
network traffic and monthly billing up top and CPU
utilization below the traffic graph. To me, this seems
like a big improvement over the AWS dashboard,
where I have to track down the pieces on various
screens.

Try It Out!

I would suggest that you try FreeBSD on the Google
Cloud Platform. There's zero cost for a short
experiment, and I think many people will like that
environment.

And More...

I have more details on my site with further Apache
details, including setting up some HTTPS headers
that can further enhance security. To read further,
visit:

https://cromwell-intl.com/open-source/google-freebsd
-tls/

36

Meet the Author

Bob Cromwell has
been using OpenBSD
since, well, not sure
how long… Some
time in the late 1990s.
He’s used Linux since
you downloaded 40+
floppy images, some
time around 1993-1994. Before that he had used
UNIX, SunOS and forms of BSD, at Purdue since the
mid 1980s. He got a BSEE at Purdue back then,
worked at the university, grad school, Ph.D. in
electrical and computer engineering, has done
consulting since 1992. He’s taught courses for
Learning Tree International since the mid 1900s, and
has written courses for them since the late 1990s.

http://www.ssllabs.com
http://www.ssllabs.com
https://cromwell-intl.com/open-source/google-freebsd-tls/
https://cromwell-intl.com/open-source/google-freebsd-tls/
https://cromwell-intl.com/open-source/google-freebsd-tls/
https://cromwell-intl.com/open-source/google-freebsd-tls/

37

MEET DAVID

Copyright © 2017 iXsystems. TrueNAS and FreeNAS are registered trademarks of iXsystems, Inc. All rights reserved.

HEY GOLIATH...

TRUENAS® PROVIDES MORE PERFORMANCE, FEATURES, AND CAPACITY PER-
DOLLAR THAN ANY ENTERPRISE STORAGE ARRAY ON THE MARKET .

Introducing the TrueNAS X-Series: Perfectly suited for core-edge configurations and enterprise
workloads such as backups, replication, and file sharing.

Unified: Simultaneous SAN, NAS, and object protocols to support multiple applications

Scalable: Up to 120 TB in 2U and 720 TB in 6U

Safe: High Availability ensures business continuity and avoids downtime

Reliable: Uses OpenZFS to keep data safe

Trusted: TrueNAS is the Enterprise version of FreeNAS®, the world’s #1 Open Source SDS

Enterprise: Enterprise-class storage including unlimited instant snapshots and advanced storage

optimization at a lower cost than equivalent solutions from Dell EMC, NetApp, and others

The TrueNAS X10 and TrueNAS X20 represent a new class of enterprise storage. Get the full
details at iXsystems.com/TrueNAS.

FREEBSD

What is an Embedded Software?

An embedded software is a computer program
created to control specific devices. Typically, these
devices have some memory, storage, and
performance limitations.

An embedded software program must be stable,
clean, and fast. Memory footprint of embedded
software is so critical that developers must create it
with caution.

No matter it’s a TV or a missile, embedded software
must to perform task flawless. Embedded software
needs to include all required device drivers. The
device drivers are written for the specific hardware.
The software is highly dependent on the CPU and
specific chips chosen.

Software development requires the use of a
cross-compiler which runs on a computer but
produces executable code for the target device.
Debugging requires the use of an in-circuit emulator,
JTAG or SWD. Software developers often have
access to the complete kernel (OS) source code.
These limitations force developers to use C or
embedded C++.

38

Mongoose Embedded Web
Server on FreeBSD
You will learn …

• What is an Embedded Software

• What is a Web Server

• What is Mongoose

• How To Install Mongoose On FreeBSD

• Serving A Web Site With Mongoose

• How To Secure Mongoose Web Server

What is a Web Server?

A web server is a software system that processes
requests via HTTP or any other protocols. The
primary function of a web server is to manage
communication between client and server, and this
takes place using the Hypertext Transfer Protocol
(HTTP).

Web servers are not only used for serving the
internet but also as a part of a system for monitoring
or administering. All we need is a browser to access
these embedded applications.

There are two types of web servers:

• User-mode web server

• Kernel-mode web server

User-mode web servers are slower because the
system takes time to respond to the request for
allocation of resources, but are more secure. In
situation where the web server is compromising, only
the web server process may be dropped at crash.

A kernel-mode web server can process more queries
per second or QPS.

What is Mongoose?

Mongoose is a cross-platform embedded web server
which is available under GPL v2 and commercial
licenses, and has a small size.

Mongoose is built on top of the Mongoose Embedded
Library which can be used for the implementation of
RESTful services to serve Web GUI on embedded
devices. Mongoose is a cross-platform application
that can be used on Windows, Macintosh OS, Linux,
QNX, eCOS, Free RTOS, Android, and iOS.

With just over 130 kB source code and an executable
footprint of 43 kB on FreeBSD, Mongoose is one of
the smallest web servers available. Mongoose is
written in C.

Mongoose is used by several companies in various
industries, including software companies, equipment
companies, semiconductor companies, and some
Fortune 500 technology companies. In January 2017,

Mongoose surpassed 2,000,000 record of
downloads.

Functions of Mongoose include:

• Cross-platform, support for Unix/Linux, *BSD,
eCos, Windows, OS X, QNX, and more.

• CGI, SSI, Digest (MD5) authorization, WebSocket,
and WebDAV support

• Resumed download, URL rewriting support, and
HTTP proxy support

• SSL support, both one-way and two-way SSL

• IP address-based ACL, Windows service, GET,
POST, HEAD, PUT, and DELETE methods

How To Install Mongoose On FreeBSD?

To install mongoose from the ports mechanism:

cd /usr/ports/www/mongoose

make install clean

To install mongoose with the package manager:

#pkg install mongoose

You can start mongoose at boot time by:

sysrc mongoose_enable="YES"

If you restart your machine, mongoose web server
will serve /var as http file sharing on port 8080. You
can see contents of /var by browsing 127.0.01:8080:

curl 127.0.0.1:8080

And just to make sure that mongoose is up and
running, issue the following command:

/usr/local/etc/rc.d/mongoose status

Output:

mongoose is running as pid 4218.

Or you can find it by listening port:

sockstat -4l

39

Output:

USER COMMAND PID FD PROTO LOCAL
ADDRESS FOREIGN ADDRESS

root mongoose 4218 5 tcp4 *:8080 *:*

mongoose does not detach from terminal, and it uses
current working directory as the web root, unless -r
option is specified. It is possible to specify multiple
ports to listen on. For example, to make mongoose
listen on HTTP port 80 and HTTPS port 443, one
should start it as: mongoose -s cert.pem -p 80,443s

Unlike other web servers, mongoose does not
require CGI scripts to be put in a special directory.
CGI scripts can be placed anywhere.

Serving A Web Site With Mongoose

First, you can create a simple html file. Let’s call this
file index.html , and put it on /usr/local/www

mkdir -p /usr/local/www

cd /usr/local/www

ee index.html

and put this on index.html :

<!DOCTYPE html>

<html>

<body>

<h1> BSDMAGAZINE </h1>

<p> bsdmag.org </p>

</body>

</html>

Then, run mongoose by typing the following:

mongoose -listening_port 127.0.0.1:80

Mongoose will listen on localhost port 80. If you have
many other interfaces, you can bind mongoose to a
specific interface.

Disable Directory Listing

You can disable directory listing by typing the
following:

mongoose -listening_port 127.0.0.1:80
-enable_directory_listing no

Log Access To Website

This command will log all access to log.txt at the
same path as index.html:

mongoose -listening_port 127.0.0.1:80
-access_log_file log.txt

The logs look like this:

127.0.0.1 - - [19/Nov/2017:20:37:49
+0330] "GET / HTTP/1.1" 304 0 -
"Mozilla/5.0 (X11; FreeBSD amd64;
rv:56.0) Gecko/20100101 Firefox/56.0"

How To Secure Mongoose Web Server?

There are so many tuning we can add to mongoose,
but two of them are necessary:

Change running user to www

mongoose -listening_port 127.0.0.1:80
-access_log_file log.txt -run_as_user
www

40

If mongoose crashes, only mongoose will go down
not the entire server.

Change www permissions to proper value

chmod -R -w /usr/local/www

This command removes write permission so a hacker
can’t run shell on your server.

Change www folder owner

chown -R www:www /usr/local/www

Only www can add or remove content to this folder.

Access Control List

mongoose -listening_port 192.168.1.1:80
-run_as_user www -access_control_list
-0.0.0.0/0,+192.168.3.0/24

This command runs mongoose on 192.168.1.1 port
80, and denies connections from everywhere, except
for 192.168.3.1/24.

Tip: we can’t call this firewall but you can do some
tricks.

Conclusion

Internet of things (IoT) is getting more popular, and
maybe FreeBSD and Mongoose will be a wise
choice. With FreeBSD and Mongoose, you can run a

full-fledged, fast and minimal web server. Additionally,
you can run mongoose on non-embedded devices.
For example, “corebox.ir” is based on mongoose web
server.

Useful Links

https://github.com/GerHobbelt/civet-webserver/wiki/M
ongoose-Manual

https://linux.die.net/man/1/mongoose

http://in4bsd.com

http://meetbsd.ir

41

Meet the Author

Abdorrahman Homaei has been working as a software developer since
2000. He has used FreeBSD for more than ten years. He became involved
with the meetBSD dot ir and performed serious training on FreeBSD. He
started his company, etesal amne sara tehran, in February, 2017. His
company is based in Iran Silicon Valley.

Full CV: http://in4bsd.com

His company: http://corebox.ir

http://in4bsd.com
http://in4bsd.com
http://corebox.ir
http://corebox.ir

DATABASE

In this paper, you will see how PostgreSQL can be
extended to pull data out of special /data sources that
allow the database cluster to query the outside world
called Foreign Data Wrapper/s. There are many
implementations of FDW that allow PostgreSQL to
live-query other databases, as well as other data
sources like web pages, files, processes, and so on.

This paper proposes a simple setup of a File System
FDW that allows a system administrator or an
application to query the filesystem to get information
about files, as well as storing at least one historical
version of the latter. The approach presented here is
not meant, to any extent, to substitute the traditional
and better suited Source Control Management
software (like RCS and alike). Moreover, all the
examples provided aim only to present the reader
with a simple background on the capabilities that
FDW allow.

Introduction

Imagine you want to store some information about
your system configuration file in a database. The

solution is straightforward: build an application that
can perform some DML (Data Manipulation
Language) against a database.

Another approach is to use a File System FDW. A
layer that connects your database directly to a File
System Data Source so that instead of the database
waiting for new data to be stored, it can (to some
extent) pull the data automatically.

In this article, I will show you how to use the
Multicorn FDW to achieve a poor-man
database-SCM.

To execute the code snippets, you need:

• git and gmake installed;

• python version 2.7 or higher;

• PostgreSQL (a recent version, for this article, I
used version 9.6.5);

• Access to privileged user capabilities (e.g., using
sudo).

42

Using PostgreSQL Foreign Data
Wrapper to Keep Track of Files

You will learn ...  

• How to using PostgreSQL Foreign Data Wrapper to keep track of files

• Compiling and Installing the Foreign Data Wrapper

• How to create the Extension

• How to create the File System Table

• Creating a Snapshot of files 

You will also need some basic knowledge about
PostgreSQL, how to create a database, a superuser
role, and so on. You can get more information
reading the online documentation or my previous
articles on the matter.

Compiling and Installing the Foreign
Data Wrapper

There are several Foreign Data Wrappers (FDW)
available for PostgreSQL. In this example, we are
going to use the Multicorn FDW, a set of Python
modules that provide several FDW implementations
within the same installation. One of such
implementation is the File System FDW.

The first step is to get the latest Multicorn
implementation. In this example, you will install the
development version obtained via Git:

% git clone
git://github.com/Kozea/Multicorn.git

Before you can actually compile Multicorn, you need
to adjust it to compile on FreeBSD:

Edit the preflight-chech.sh file, and change the first
line with the current available Bash, that is:

% head -n1 preflight-check.sh

#!/usr/local/bin/bash

Remember to run gmake instead of make, so:ake
istall

• Create the Extension

To create the extension, you need to connect to the
PostgreSQL database as superuser, and then load
the Multicorn extension. After that, you need to define
a Data Server, an entry point for external data to
come into the database.

Therefore:

CREATE EXTENSION multicorn;

CREATE SERVER filesystem_server

 FOREIGN DATA WRAPPER multicorn

 OPTIONS (wrapper
'multicorn.fsfdw.FilesystemFdw');

• Create the File System Table

Suppose we want to collect information about the
/usr/local/etc/ configuration files. Therefore, you need
to define a table that will contain various data:

• the filename;

• the content (as text);

We can elaborate a little more by adding a hash
column, and the date the file has been inspected.

Therefore, the table will be defined as:

CREATE FOREIGN TABLE usr_local_etc (

 full_file_name text,

 content text,

 service text

) SERVER filesystem_server

 OPTIONS(root_dir '/usr/local/etc',

 pattern '{service}.conf',

 content_column 'content',

 filename_column 'full_file_name');

Now, you can try it with a simple SELECT statement:

SELECT service, full_file_name  
 FROM usr_local_etc;

 service | full_file_name

----------+----------------

 pkg | pkg.conf

 tcsd | tcsd.conf

 pcp | pcp.conf

 pgpool | pgpool.conf

 pool_hba | pool_hba.conf

 idn | idn.conf

 idnalias | idnalias.conf

However, there is a hidden problem: while the user
can run simple stat commands on the filesystem,

43

he/she cannot get the content of the files. In fact, if
you try to get the content of a file you’ll get an error:

SELECT service, content FROM usr_local_etc;

ERROR: Error in python: OSError

DETAIL: [Errno 13] Permission denied:
'/usr/local/etc/tcsd.conf'

The problem arises from the fact that
/usr/local/etc/tcsd.conf has no world-readable flag. A
quick solution is to allow another user to read by
either changing the file mode (e.g., 644) or to invite
the user running the PostgreSQL server to the group
of the file owner (in this case _tss), and setting the
mode to 640.

% id postgres

uid=770(postgres) gid=770(postgres)
groups=770(postgres)

% sudo pw usermod -n postgres -G _tss

% id postgres

uid=770(postgres) gid=770(postgres)
groups=770(postgres),601(_tss)

Once the above problem is solved and the trick
applied to any problematic file, you can query the
table to get living data from the underlying file system
(See Listing 1).

44

Listing 1. Living data

SELECT service, content

 FROM usr_local_etc

 WHERE service = 'pkg';

 service | content

---------+---

 pkg | # System-wide configuration file for pkg(8) +

 | # For more information on the file format and +

 | # options please refer to the pkg.conf(5) man page +

 | +

 | # Note: you don't need to have a pkg.conf file. Many installations+

 | # will work well with no pkg.conf at all or with an empty pkg.conf +

 | # (other than comment lines). You can also override any of these +

 | # settings from the environment. +

 | +

 | # Configuration options -- default values. +

 | +

 | #PKG_DBDIR = "/var/db/pkg"; +

 | #PKG_CACHEDIR = "/var/cache/pkg"; +

...

Creating a Snapshot of files

Using the Foreign Data Wrapper, the database will
query the filesystem each time you issue a query,
and this means the data in the usr_local_etc table will
change accordingly to changes performed outside
the database.

If you need to keep a snapshot of the file content,
let's say to implement a poor-man file control
management, you can use a materialized view.

A materialized view is a view over data that is
populated by a snapshot of data pulled out from a
table. Each time you refresh the view, new data is
pulled out of the table. Otherwise, the view will
provide a static snapshot of the data at the time it
was last updated.

To better explain it, let's create a materialized view to
get the content of the files into the file system:

CREATE MATERIALIZED VIEW
usr_local_etc_snapshot AS

 SELECT service, full_file_name, content,

 current_timestamp AS ts,

 md5(content) AS hash

 FROM usr_local_etc

 ORDER BY service

 WITH NO DATA;

When you decide to pull updated data from the
filesystem into your snapshot, do the following:

REFRESH MATERIALIZED VIEW
usr_local_etc_snapshot;

Let's check that the data into the view is coherent
with what is in the database (See Listing 2.)

Also, check the MD5 outside of the database:

% sudo md5 /usr/local/etc/pkg.conf
~

MD5 (/usr/local/etc/pkg.conf) =
84925257b233f69068214cdaf3f630a2

As you can see, the MD5 is the same. Therefore, the
data in the materialized view does represent the
current snapshot of the filesystem.

Now, imagine you modify the pkg.conf file so that it is
updated outside of the database:

% sudo emacs /usr/local/etc/pkg.conf

...

% sudo md5 /usr/local/etc/pkg.conf

MD5 (/usr/local/etc/pkg.conf) =
a82431a939e221dd5fc8b702542a30d4

45

Listing 2. Database

SELECT full_file_name, hash, ts

 FROM usr_local_etc_snapshot;

 full_file_name | hash | ts

----------------+----------------------------------+-------------------------------

 pkg.conf | 84925257b233f69068214cdaf3f630a2 | 2017-11-09 16:54:30.668574+01

...

Then, let's see what the materialized view reports
(See Listing 3 above).

As expected, it does still report the old hash, the
data within the materialized view which has not been
modified. What this means is that the content column
of the view also has a track of the old (i.e., before
editing) content of the same file, allowing for a quick
(and dirty) restore of the file content.

What has Changed?

The fact that the materialized view contains the
snapshot of the filesystem allows for querying the
status of the filesystem itself against the previous
(last) snapshot:

WITH current AS (

 SELECT service, md5(content) AS hash

 FROM usr_local_etc

)

 SELECT service, ts AS ModifiedSince

 FROM usr_local_etc_snapshot snapshot

 WHERE snapshot.hash <> (

 SELECT hash

 FROM current

 WHERE service =
snapshot.service)

 UNION

 SELECT service, ts AS ModifiedSince

 FROM usr_local_etc_snapshot snapshot

 WHERE NOT EXISTS (

 SELECT service

 FROM current

 WHERE service =
snapshot.service);

46

Meet the Author

Luca Ferrari lives in Italy with his beautiful wife, his great son, and two female cats. Computer science
passionate since the Commodore 64 era, he holds a master degree and a PhD in Computer Science. He is
a PostgreSQL enthusiast, a Perl lover, an Operating System passionate, a UNIX fan, and performs as much
tasks as possible within Emacs. He considers the Open Source the only truly sane way of interacting with
software and services. His website is available at http://fluca1978.github.io

Listing 3. Reports

SELECT full_file_name, hash, ts

 FROM usr_local_etc_snapshot

 WHERE service = 'pkg';

 full_file_name | hash | ts

----------------+----------------------------------+-------------------------------

 pkg.conf | 84925257b233f69068214cdaf3f630a2 | 2017-11-09 16:54:30.668574+01

http://fluca1978.github.io/
http://fluca1978.github.io/

The above query is made up of three parts:

• current is a CTE (Common Table Expression), a
sub-query that computes the hash on the current
file system data (i.e., querying the FDW);

• the first SELECT extracts all files that have been
modified since the last snapshot (i.e., since the last
REFRESH MATERIALIZED VIEW);

the second SELECT extracts all files deleted since
the last snapshot.

Running the above query provides the following
result:

 service | modifiedsince

---------+-------------------------------

 pkg | 2017-11-09 16:54:30.668574+01

meaning that the pkg service has been modified
since the last time it was taken into the materialized
view.

Conclusions

This article has demonstrated a concrete application
of PostgreSQL Foreign Data Wrappers feature to
allow the database to query other data sources, in
particular, a file system to get and track file
information. There are a lot of FDW implementations
allowing even more, like web browsing and parsing,
other database querying, web service interactions
and so on. These can all be used as building blocks
for a more complex layer of data management.

References

PostgreSQL web site: http://www.postgresql.org 
PostgreSQL FDW:
https://wiki.postgresql.org/wiki/Foreign_data_wrappers 
Multicorn FDW: http://multicorn.org/

47

http://www.postgresql.org/
http://www.postgresql.org/
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
http://multicorn.org/
http://multicorn.org/

ADMIN

In this article, you will learn how to setup HP t620
Thin Client with Linux Kernel. First, we must enable
the Admin Mode. To do this right-click anywhere on
the desktop. Then, click on “Switch Admin/User
Mode”.

If this is your first time, you must set a password
which you will use to access the Admin Mode. As
soon as you are logged in, a red border will appear
around the desktop to signalize that you’re in the
Admin Mode.

Now, we can start with the configuration. I suggest
switching to the ThinPro OS. To do this, we have to
access the settings through the taskbar, hover over
“Setup” , and then click on “Customization Center”.

In the window that has just opened, click on the
“Switch to ThinPro” button and allow the ThinPro OS
to load. This shouldn’t take too long. When the OS
has finished loading, proceed with the configuration.

Displays

To edit our display settings, let’s click on the settings
button in the taskbar. Then, hover over “Peripherals”
and click on “Display Preferences”.

At this stage, we can choose which display to be the
primary display and which one to be the secondary
display. Also, we can choose the direction in which
the screen should extend.

48

Free RDP Configuration

Keyboard

By default, the keyboard layout is set to US (United
States). To change the keyboard layout, right-click on
the “US” letters at the bottom right of the primary
display. Then, click on “Keyboard layout”

In the active window, choose your preferred keyboard
layout in the “Standard Keyboard” dropdown.

Setting up a remote desktop
connection

To start a remote desktop connection, we must open
the connection manager. We can open it by clicking
on the following symbol in the taskbar:

The next step is deciding what kind of remote
connection we would like to establish. For this
example, let’s choose a custom connection.

Let’s give the connection a good name, so that we
know to which PC to connect. I recommend using
other PCs’ IP as the name of the connection. Let’s
start with the command we want to run. First, we
must decide which program we’re using. Let’s
choose xfreerdp, and type it in the command box
accordingly. Now we could just enter the IP of the PC
we wish to connect to and start the connection, but if
we do that, the resolution will be quite uncomfortable
to look at and only one monitor will be used. That’s
not necessarily bad if we only want to use one
monitor for the remote connection. However, if we
want to use more, we must add some commands. An

49

important thing to mention is that the order of the
commands we enter matters. That’s why we’ll start
by fixing the resolution.

Resolution

To get rid of the nasty resolution, type the following
commands right after the “xfreerdp” in the command
box:

+aero - This will manage the desktop composition of
the remote connection.

+smart-sizing - Scales the remote desktop to the
window size.

+fonts - Enables smooth fonts, this will make the
resolution much more comfortable.

-f - Full screen mode

The following commands are used to decide the
resolution of the window:

/monitors:0,1 This will determine how many
monitors will be used. Make sure to start counting
from zero.

/multimon This enables you to use multiple
monitors.

/w: Determines the width of the window.

/h: Determines the height of the window.

/size: Determines the screen size.
(<width>x<height>)

/compression:off Disables compression

/bpp: Defines the color depth

Remaining commands:

/sound Enables sound from the
connection.

/v: *IP-Address* Here, we must enter the IP of the
device we want to connect to.

In the end, the complete command should look
something like this:

50

Meet the Author

Loris Zimmerman is an IT student who works at
OBRO AG in Switzerland. He is always
interested in computers and related stuff. He
started working in IT one and a half years ago. If
you wish to contact him, send an e-mail to:
loris.zim@hotmail.com

mailto:loris.zim@hotmail.com
mailto:loris.zim@hotmail.com

51

www.balabit.com

Among clouds

 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second

zero message loss due to the

Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition

product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

INTERVIEW

Interview with
Abdorrahman
Homaei
Can you tell our readers about yourself and your role nowadays?

Currently, I am busy with daily administration tasks and CoreBOX development which are getting harder and
intense. Besides, I have a company located in Iran Silicon Valley and have to manage my enterprise. 
 
How you first got involved with programming and the FreeBSD world?

About 12 years ago, I was an active and professional windows developer. Secure programming was what
introduced me to the FreeBSD world. On FreeBSD, everything was orderly and documented. I think FreeBSD is
the developer’s paradise. I wrote my first application on FreeBSD 12 years ago, and as you can imagine, there
was no headache like windows, no undocumented API, and no crashing.

While having a wide field of expertise, please tell our readers on which area you put the most emphasis,
and why?

In my view, security is the most important expertise irrespective of the OS you are using. It doesn’t matter how
hard you interact with that OS, with shell or with 3D GUI, or who you are, if someone can hack you, then your
business is not reliable and you are the loser. Hence, I put much emphasis on security since it is the most critical
area.

What was your best work? What was the idea behind it? What was its purpose?

My best work was migrating my desktop to FreeBSD. Using FreeBSD as desktop is so complicated. Every day,
you face serious challenges but after a while, you will learn everything and become a geek. Using FreeBSD as
desktop teaches you how to solve any problem.

52

What is your the most interesting programming issue you have encountered, and why?

Migrating to FreeBSD was not easy. I was a device driver developer, but when you migrate to other
OS(FreeBSD) and you cannot even work with its command line, it’s so hard to develop a simple application.
Therefore, programming a device driver was impossible.

What tools do you use most often, and why?

CSH is my best friend because I can do everything in shell and it gives me a good feeling. I also frequently use
shell utilities like SSH. When it comes to development, I use C++ , QT , and many more. 
 
What was the most difficult and challenging implementation you’ve done so far? Could you give us
some details?

I think you are talking about CoreBOX exactly. CoreBOX has a brilliant idea behind. Using FreeBSD as a
role-based hypervisor is state of the art. In the beginning, you must choose your mechanism to control the
hypervisor. You can create a web-based access or application access like many others. Selecting each one will
force you to learn how to authenticate users, send and receive data.

CoreBOX neither uses web-based access nor a custom application. CoreBOX is clientless, and you can connect
to virtual desktop.

Can you tell us more about your company?

My company’s name is “etesal amne sara tehran”. I have a 5 year old daughter, and I named the company after
her name, Sara. My company is based in Iran Silicon Valley. Our main domain is virtualization, and we use
FreeBSD as our infrastructure.

What is CoreBOX?

CoreBOX is a Type-2 FreeBSD-Based High-Performance hypervisor, designed for building carrier-grade virtual
infrastructure.

What future do you see for FreeBSD and other OSes? Can you tell us about your favorite features in the
new releases?

It seems FreeBSD is more focused on single-board computers. Many companies like FreeBSD because of its
liberal license. I hope we will see more from FreeBSD and NetBSD in IoT market. Support for the Allwinner A13
board has been added, and it’s interesting.

Do you have any specific goals for the rest of this year?

My goal is to add CoreBOX new features like adding new resource scheduler and auto-tuning.

What’s the best advice you can give to the BSD magazine readers?

FreeBSD is an enterprise-class operating system which is reliable and secure. The only way to learn FreeBSD is
to install it on your desktop.

Thank you  

53

INTERVIEW

Interview
with
Oleksandr
Tymoshenko
Can you tell our readers about yourself and your
role nowadays?

My name is Oleksandr Tymoshenko. I am a software
developer with more than 15 years of experience.
Over these years, I worked on a number of projects
in various fields including Linux PDA software, SMS
center for GSM telco, servers for multiplayer games,
IP PBX box, and firmware for VoIP phones.

I am have been a FreeBSD committer since 2008
when I started as a FreeBSD/MIPS developer, but
switched camp to FreeBSD/ARM sometime later.

At the moment, I work for Dolby Laboratories as a
senior software developer, building conferencing
products. We don't use FreeBSD in our products,
FreeBSD is just my hobby.

How you first got involved with programming and
the FreeBSD world?

I was fascinated by computers between theage of 8
to 9, but only got a chance to work with them when I
switched school at 14. I started learning Turbo
Pascal, then 8086/80286 assembly and couple years
later, after I had got access to local university's

HPUX system, I picked up some basic C knowledge.
In my second year at the university, I got a job at
university's network operations center. They used
FreeBSD on most of the systems, and that was the
first time I tried this OS. I think it was FreeBSD 3.0. I
did some sysadmin work for NOC, experimented
with kernel hacking, just examples mostly, nothing
really exciting.

My first commercial FreeBSD experience was
porting drivers for telephony cards (PCI boards you
could connect to phone lines) for small IP PBX
startup. While working for this startup, I came across
MIPS boards and got interested in its architecture. I
thought that it would be nice to run FreeBSD on
them. So I found some initial work in this area done
by Juli Mallet, and started experimenting with things.
That was the start of my active contribution to a
FreeBSD project.

54

While having a wide field of expertise, please tell
our readers on which area you put most
emphasis, and why?

Since I don't base my career on FreeBSD work, I
pick whatever is fun to toy with. I like working on
hobbyist ARM boards like Raspberry Pi and
Beaglebone products families. Hardware-wise, they
are simple enough so you can easily master
thewhole architecture. There are no complex clock
domains or super-intricate power management
controls, and yet they're powerful enough so you
don't have to fight for every kilobyte of RAM. You
can easily extend them with external devices using
I2C, GPIO or SPI buses. They're pure tinkering
material and a lot of fun.

What was your the best work? What was the idea
behind it? What was its purpose?

There is no single project I can point at and call it a
magnum opus. I'd say the cumulative contributions
to FreeBSD is my best work so far. At least most
impactful. They're building blocks and stepping
stones for other people's projects. It's very
rewarding to see your work being used by other
developers and hobbyists in most unexpected ways.
Or how once buggy and unstable code after some
time and effort becomes a rock-solid platform for
someone else's product.

What is your the most interesting programming
issue you’ve encountered, and why?

To be honest, I don't have any interesting
debugging war stories. Debugging is exciting in a
puzzle-solving way during the process. However,
even when hours of painstaking search boils down
to one-liner fix: missing cache sync operation,
memory barrier or in worst case, an extra semicolon
in a wrong place. It's only entertaining for a day or
so.

What tools do you use most often, and why?

For day to day work, I mostly use tmux + vim with
few plugins as dev environment, and ack
(textproc/ack) for code search. tmux offers powerful
features for organizing workspace. I group windows
in sessions by theme, i.e., ARM work in progress

session with build shell, serial terminal and editor,
then another session for Bugzilla work. This
environment runs either on either a server or desktop
machine, and I can SSH to it and reconnect to the
session from anywhere. On my laptop, I use i3,
tile-WM that goes well with tmux/vim combination. I
use subversion for FreeBSD stuff, git for personal
projects, and Perforce at work. I'm a long-time fan of
mutt mail client which I use for most of my personal
and open-source related communications.
Communication software: irssi for IRC and profanity
as irssi-like Jabber client.

What was the most difficult and challenging
implementation you’ve done so far? Could you
give us some details?

That would be porting u-boot and FreeBSD to
Raspberry Pi. I wanted to create FreeBSD port for Pi
but to work on it, I needed a way to netboot device.
It’s essential when you start to work on embedded
device support for FreeBSD. Board support is added
to kernel config step by step. First, you check if
control is passed to kernel entry point by printing
something to serial console in _start method.
Thereafter, you move debug output further into
kernel initialization routine and so on. Sometimes
this process is smooth and requires just a few
iterations, but often it's multiple fix/build/boot cycles.
Without netboot, you have to extract SD card, write
new kernel to it, put it back, powercycle board, and
check results. Wash, rinse, and repeat. It is slow,
dull, and tedious. With netboot, all you need is to
build the kernel, copy it to TFTP server, and
powercycle board. Board will get address by DHCP,
download kernel from TFTP server, and pass control
to it. Normally, boards come with versatile boot
loader called u-boot (which is de-facto standard
these days) built by hardware vendors like Freescale
or Marvell. Raspberry Pi back then didn't have it,
and proprietary boot code from Broadcomm could
only load a kernel from SD card. So I had to port
u-boot to Rasperry Pi first using that slow and
tedious process. There was no way around it. For
netboot, I needed a network card driver. Luckily,
u-boot had it. However, I hit a snag beacsue USB
controller driverwas absent. Additionally,there was
no datasheet and no way to put USB protocol
analyzer between USB host and ethernet controller

55

to see if my changes affect anything. They were both
integrated on a board. Hence, I used Linux driver as
a reference and tried to implement a minimal subset
of functionality to get ethernet working. Every
iteration involved exchanging SD card between Pi
and desktop. I almost quit a couple of times but out
of sheer stubbornness, I kept experimenting and
finally was able to transfer the kernel from TFTP
server. The code was terrible, but it was good
enough to unblock my FreeBSD work.

Can you tell us more about the Bugmeister team?
What did you do there?

Bugmeister team works on keeping bugtracker
system running, and on making bug reporting and
tracking as easy as possible. The less effort required
to work on bugs, the higher the chances they'll be
worked on. FreeBSD used to use GNATS
bugtracking system, much dated and not super
flexible to put it mildly. 4-5 years ago, it was decided
that the project should switch to a better tool and
the Bugmeister team was responsible for picking
and deploying it. I was one of the developers
working on that task. I resigned from the team in
2014, few months before the actual switch
happened. I volunteered back in 2016 to do some
routine administrative tasks like helping users with
passwords, killing spam PRs, and making minor
modifications to Bugzila codebase.

FreeBSD uses a customized version of Bugzilla. The
Bugmeister team is responsible for maintaining this
version and adding new features to automate some
of the tedious work or adopt it to FreeBSD
workflows.

Can you tell our readers more about your
commits to FreeBSD?

I do not commit to FreeBSD much these days. I am
busy with a daytime job, and there is just not enough
spare time to get back into FreeBSD flow. I do
occasional fixes for some FreeBSD/ARM drivers,
commit patches submitted by contributors. But
nothing major, unfortunately.

What future do you see for FreeBSD and other
OSes? Can you tell us about your favorite
features in the new releases?

I am terrible at making predictions. I think FreeBSD
is gaining momentum as "true" server/development
UNIX. With systemd haunting major Linux distros,
people start looking for alternatives and since
FreeBSD has more conservative approaches and
features like ZFS, it makes a good candidate in
server space. But again, this might just as well be
my echo chamber.

Moreover, there is ongoing effort to use FreeBSD as
an educational OS which I support with all my heart.
I think FreeBSD is an example of good engineering
and an excellent primer in OS design.

I use 12-CURRENT on my laptop, so I don't wait for
new releases. Most exciting recent feature for me
was drm-next-kmod port. Now I don't have to build
custom kernel branch to get decent Xorg
performance from my Kabylake-based Thinkpad.

Do you have any specific goals for the rest of this
year?

I want to add VideoCore interface support for
Raspberry Pi 3. Pi 3 is 64-bit device while older Pi's
are 32-bit, and some work required to port advanced
features like audio or OpenGL. It almost works but
as usual, there is some weird bug which requires a
long enough stretch of time to sit and work on it.

What’s the best advice you can give to the BSD
magazine readers?

Use the contributions to open-source projects as
learning opportunities. Find an area you're interested
in, submit patches, ask for feedback, ask questions,
and ask for references to code/papers/books. Try
mailing lists, try IRC/Slack channels, and try emailing
the author. Sometimes there will be no response,
sometimes people will forget to follow up, or you
might come across a toxic person at some point.
Whichever the case, try not to get discouraged.
There are a lot of people in open-source community
who are willing to share their knowledge and
experience: find them, grow your network, and keep
those patches coming.

Thank you

56

57

READ ONLINE WWW.BSDMAG.ORG

http://WWW.BSDMAG.ORG
http://WWW.BSDMAG.ORG

COLUMN

On October 1st, the Network Enforcement Act took effect in Germany. This
creates a legal framework for censorship of the Internet. As more and more
governments take the hammer of censorship to content, what are the
ramifications for free speech, but more importantly, has the Internet come
of age?

ROB SOMERVILLE

As a writer and technologist, I fall into the same category as musicians, artists and philosophers have done
throughout the ages. Torn between commercial reality and freedom of expression, I have to continually examine
any output to ensure that it treads a fine line between entertainment, education, and offence. More often than
not, a lot of what I want to say has to be responsible and truthful, yet removes the core emotion and guttural
meaning behind the message. Or to put it another way, bring race, religion, politics or money into the equation,
you leave yourself open to criticism and / or censure. Which is fair enough, if you have an all-out bias or level of
opinion that firmly places you in the category of bigot, bore or banshee. I would agree that the first two
categories deserve a certain degree of civilised opprobrium, the latter much less so.

A banshee, according to Wikipedia, is a female spirit in Irish mythology who heralds the death of a family
member, usually by wailing, shrieking, or keening. This is not to be confused with a troll or other general
troublemaker, as the wail is not so much to cause irritation to the ears but to signal to the wider community that a
tragedy, an injustice has taken place. It is not without significance that women are given a wide tolerance to
express grief in any civilised society, as they are often economically the individuals who have to bear the
consequences of the death of a child or a partner. In this egalitarian age, I would humbly submit that when
pushed to the limits, men are also capable of such expression, albeit with fewer tears. And that is the problem,
we have opened a Pandora’s box of communication, where all sides can come to the table, argue, make
adjustments, refine their weapons, and come back with a stronger case to batter their “opponents” into
submission.

Free speech is an integral part of any civilised society. I am loath to say democratic here, as many individuals
who have a valid complaint or axe to grind have often been ignored by the wheels of justice. The Internet is a
powerful weapon in this regard, as the hypocrisy and inefficiency of government and politics at large can be
exposed for what they are. Given a revelation, a narrative, the only response that the guilty party can respond
with is either a barrage of PR flak, an attempt to discredit the author, or worse still. The Internet is populated by
lunatics of course, with their conspiracy theories and psychologically damaged rantings.

58

Some of the most convincing arguments I have ever experienced have been propositioned from the online
community, and I have been online long before it became a dot on the political radar. There is something about
writing, typing, that engages a different part of the brain. It gives the author enough freedom to self-edit, say
things more considered than a one-to-one conversation. In the real world, you might be a 6-foot man with a
shaved head, considerable muscle and tattoos, and me, a 5-foot female with brittle bone syndrome. Online, all
we have is a handle and accountability to the intelligence services and governments that monitor every byte of
traffic. That is a game changer, and the powers that be are scared, really scared. And not just of the trolls and
genuine lunatics.

All of this boils down to the rule of Three’s. We can work inside the system, outside the system, or consider a
different path. And here, I will be controversial. The Internet is spiritual. Unless we engage that side of ourselves,
all is naught. We are but cogs in a wheel, slaves to a machine, meaningless chemical factories that are doomed
to rot. A lot has been argued about fake news, credibility and the like, but we are now facing a crisis of faith.
Where the old era was concerned with faith in God, we are now looking at faith in information and content
providers. Faith, like everything else, has been neatly divided, then parceled up and placed in a corresponding
container. Rather than judging the actions of individuals, those in control have been bewitched by judging their
thoughts and motives – an affront to any human being.

The closing of these doors brings this whole problem into a difficult and sensitive arena – politics. Currently,
Russia is under attack from Western media (and indeed government) for being ultimately, a purveyor of “fake
news”. As far as propaganda is concerned, I think the West has a lot to answer for. All of this gibberish (and I
can’t think of any better word to describe it) goes back, as far as I can remember as a child, to when the USSR
managed to take the wind out of the sails of the USA by placing a working satellite in orbit, and the first
unmanned probe on the moon. Bereft of physical manifestation, the only recourse was demonisation and
character assassination. The result of losing face was not going to be pretty, and as a result, the cold war
continued on for many more years. Who knows what world we would be living in if dialogue, engagement, and
discourse had been the result of this technological achievement?

Technology, like people, goes through growth stages. The wonder and innocence has now moved on, and we
are left at best with an awkward teenager with spots or at worst, a rich individual going through a midlife crisis.
The true players are making their presence felt at the watering hole of power, and no matter how dirty their
hooves, legs or bodies are, they desire to bathe in the cool waters where others drink. It is time for a clean
water act.

59

60

