

2

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-

art features:

with over six million downloads,

Freenas is undisputedly the most

popular storage operating system

in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

»
»

»

»

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u

Freenas 2u

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

3

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-

art features:

with over six million downloads,

Freenas is undisputedly the most

popular storage operating system

in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

»
»

»

»

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u

Freenas 2u

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

EDITOR'S WORD
Dear Readers,

I repeat the same task every month where I get the chance to craft the editor’s words. It is quite interesting
when choosing whether to start with “I hope you are well” or different way, and what to write thereafter. But to
me, the most important thing is what you will find in the monthly BSD magazine issues, and if the featured
articles will encourage you to start new projects and aid you in choosing your OS or programming direction. I
hope that you will not only enjoy reading this month’s issue but also acquire additional knowledge and learn
new skills.

In this month’s issue, you will see the next article on FreeBSD Port-Knocking written by Abdorrahman Homaei.
This is a decently written, technical article. It clearly explains how to set up port knocking. Abdorrahman
Homaei is our regular reviewer and he has been working as a software developer since 2000. He has used
FreeBSD for more than ten years. Moreover, he became involved with the meetBSD dot ir and performed
serious training on FreeBSD. He started his company in Feb 2017. I have scheduled an interview with him.
Therefore, if you have any questions, feel free to contact me.

For Rafael Santiago de Souza Netto’s fans, I have an additional article written by him. This time, Rafael will
introduce you to using LIBC in IA-32 Assembly code. The C calling convention will be discussed, equipping
you, the reader, with the necessary knowledge to interface C code into your Assembly programs. This article is
really technical, but relatively easy to read. It offers the best explanation on how to write and compile software.
As always, Rafael provides great and very well written piece of work. I hope that he will write more insightful
articles for us. Any suggestions are welcome.

I would also want to recommend the next article written by Carlos Antonio Neira Bustos. He will teach you more
about SmartOS. Carlos Antonio Neira Bustos has worked for several years as a C/C++ developer and kernel
porting and debugging enterprise legacy applications. He is currently employed as a C developer under Z/OS.
There, he debugs and troubleshoots legacy applications for a global financial company. Also, he is engaged in
independent research on affective computing.

To this moment, I am proud to announce that he has written many articles for the BSD magazine, and his works
reflects how professional he is. They are always good; highly technical, well written and neat, and most
importantly, very helpful.

Trust me, one is never enough! I am certain that after reading the well-written article on Design and Analysis of
Object-Oriented Feedback Process Scheduler in User Level written by Alexandre Beletti Ferreira and Victor

4

Hugo Panisa Bezerra. It is a relevant paper. The purpose of this article is to present an object-oriented design
for a feedback process scheduler that runs on user mode.

As is the norm in every BSD issue, an interview could not be missed. This month, I would like to introduce two
amazing and interesting people: Steve Wong and Joshua D. Drake. Steve Wong is the Director of Storage
Product Management at iXsystems, and a Product Manager for the TrueNAS, FreeNAS Mini, and the FreeNAS
Certified product lines. Joshua D. Drake is the Founder of Command Prompt, Inc. and United States
PostgreSQL.

And, do not miss Rob’s Column. It is a critical column which holds a must-read position in the BSD magazine.

Lastly, I would like to express my sincere appreciation to the BSD team members for reviewing and
proofreading, and iXsystems for their constant support and time to make this edition a success. 
 
And now, let’s read the articles. 
 
Enjoy! 
Ewa & The BSD Team

IN BRIEF

In Brief 08 
Ewa & The BSD Team  
This column presents the latest news coverage of breaking news, events, product releases, and trending topics
from the BSD sector.

SMARTOS

Application Observability on SmartOS Using Dtrace Quickstart 12 
Carlos Antonio Neira Bustos 
In this article, Carlos takes a look at DTrace and what cool things it could do for you. The first requirement is an
application to instrument. He chose a fairly-known application called Minecraft. In his article, you will use
DTrace to see what we could observe. But you want to deal with the details on how to create your own scripts
and thus, how to create DTrace scripts.

PROGRAMMING

Taking Advantage of LIBC to Write Portable Assembly Programs 18 
Rafael Santiago de Souza Netto 
This article will introduce you to using LIBC in IA-32 Assembly code. The C calling convention will be
discussed, equipping you, the reader, with the necessary knowledge to interface C code into your Assembly
programs. In this article, a sample will be used in a Conway’s Game of Life, fully written in IA-32 Assembly. The
discussed code works in 

5

TABLE OF CONTENTS

FreeBSD, NetBSD, OpenBSD, MINIX, Linux, Solaris and also Windows. The text assumes that the readers
have, at least, a basic knowledge of Assembly programming.

SECURITY

FreeBSD Port-Knocking 30 
Abdorrahman Homaei 
Port-knocking is not only about opening a port or something like that. You can do whatever you want like
executing a special script or something like reverse shell or, etc. This article will show you how to install a
Port-Knocking Client/Server, how to configure Port-Knocking Server, and lastly, how to create Reverse-Shell.

MINIX

Design and Analysis of Object-Oriented Feedback Process Scheduler in User Level 34 
Alexandre Beletti Ferreira and Victor Hugo Panisa Bezerra 
Some operating systems need modularity between their components as one of the main factors to implement a
microkernel that is both secure and fault tolerant. When we consider dealing with operating system structures
as objects, we see that it greatly helps to implement the desired modularity in these systems. 
The purpose of this article is to present an object-oriented design for a feedback process scheduler that runs
on user mode. The authors show the details of the original structured implementation, the new pro-posed
design, and show the adopted mechanism to interface the new scheduler and the other servers or even the
kernel.

INTERVIEW

Interview with Joshua D. Drake 44 
Ewa & The BSD Team  
Joshua D. Drake is the Founder of Command Prompt, Inc. and United States PostgreSQL. Additionally, he is a
former Director of Software in the Public Interest, and the current Director of The Postgres Foundation. He has
been doing this Open-Source thing since Linux SLS. He is an avid outdoorsman, family man, and a Linux and
Postgres lover.

Interview with Steve Wong 46 
Ewa & The BSD Team 
Steve Wong is the Director of Storage Product Management at iXsystems, and he served in this role since
December 2016. He sometimes gets asked what exactly a product manager does, and depending on who you
ask, you may get a slightly different answer. But in general, a product manager has an overall responsibility and
accountability for a product line or product lines. In his case, the TrueNAS, FreeNAS Mini, and the FreeNAS
Certified product lines are under his team’s responsibilities.

COLUMN

The social implications of technological advancement are often presented in positive terms, yet our core
working patterns have slightly changed since the agricultural age. With the increasing expansion of
automation, robotics and artificial intelligence into traditionally secure employment sectors, what
changes can we expect to see in a society where employment opportunities for the unskilled,
semi-skilled and the professional rapidly shrink? 50 
Rob Somerville

6

7

IN BRIEF

iXsystems’ TrueNAS
Delivers Object Storage
Features and
Performance
Improvements
New TrueNAS 11.0 Release improves storage
performance by up to 25%, decreases latency by up
to 45%, and enables customers to deploy a private
or hybrid storage solution. 
iXsystems, the enterprise storage vendor renowned
for its open-source software contributions, today
announces Version 11.0 of the TrueNAS enterprise
storage array operating system.

TrueNAS 11.0 represents the latest generation of
TrueNAS software for the award-winning line of
enterprise storage arrays, and is available to all new
and existing TrueNAS customers. TrueNAS 11.0
introduces support for the object-based Amazon
simple storage service (S3) API. Customers can now
test, develop, and deploy applications on TrueNAS
as part of a private or hybrid cloud, avoiding the
pitfalls of public clouds.

 
Combined with VMware, Citrix, and Veeam
certifications, the TrueNAS Z product line makes a
great datastore for ESXi VMs, XenServer VMs, and
Veeam backup images. TrueNAS users will benefit
from the overall systematic, architectural, and
performance improvements in TrueNAS 11.0. Testing
indicates that certain storage operations, such as
serving up files, operate up to 25% faster with an up
to 45% reduction of latency than the same storage
operations using TrueNAS 9.10.

Product Highlights

• Unified: Simultaneous file, block, and object
protocols to support multiple applications.

• Reliable: Uses the OpenZFS file system, which
ensures data integrity with best-in-class
replication, snapshotting, and protection against
data corruption and decay.

• Safe: High Availability option for continuous data
availability. You can replicate data remotely or
locally to any product in the iXsystems storage
lineup.

• Trusted: Built on iXsystems FreeNAS, the world’s
#1 software-defined storage solution with over 9
million downloads.

• Solid: Award-winning 24/7 white-glove support
and enterprise-class features such as
compression, deduplication, and thin-provisioning.

• Consistent: Provision and manage S3-compatible
object storage using extensions to the GUI
interface found in TrueNAS 9.10.

• Protects VMs: TrueNAS is certified by Citrix,
VMware, and Veeam, helping to accelerate the ROI
when deploying it in support of virtualization or
backup/archive solutions.

In addition to adding S3 compatibility and
performance gains for file and block protocols,
TrueNAS 11 introduces new alerting capabilities with
support for AWS-SNS, Hipchat, InfluxDB, Slack,
MatterMost, OpsGenie, PagerDuty, and VictorOps.
This new feature is just one of the many
improvements to the TrueNAS architecture that
make TrueNAS the ideal compute and storage
appliance for mission-critical business usage. 
iXsystems also announces the general availability of

8

the TrueNAS X10, an entry level enterprise-class
storage solution that is ideal for mission-critical
workloads such as file sharing, backups, and
replication.

The TrueNAS X10 was announced on June 6, 2017,
and has seen strong demand due to its low entry
price, offering 20TB of enterprise-grade storage for
under $10,000 and providing scalability to 360TB.
The TrueNAS X10 ships with TrueNAS 11.0, allowing
SMBs and others to use the TrueNAS X10 to share
Amazon S3-compatible storage.

TrueNAS 11.0 also runs on the TrueNAS X10, Z20,
Z30, Z35, and the Z50 TrueFlash. TrueNAS updates
are available through the software updater, a
component of the user interface.

TrueNAS customers will be alerted of the availability
of the TrueNAS 11.0-U2 update and should contact
iXsystems Technical Support if they have any
questions.

To learn more about the TrueNAS 11.0 release, send
an email to info@iXsystems.com, call
1-855-GREP-4-IX, or visit
www.iXsystems.com/TrueNAS. 

Source:
https://www.ixsystems.com/blog/truenas-v11/

Stormshield and FreeBSD
Stormshield has been using FreeBSD, an advanced
open-source operating system, since 1998 along
with many others including Apple, Juniper, Cisco
and Dell. This collaborative approach is important to
Stormshield, which demonstrates its commitment by
providing financial support to the FreeBSD
foundation.

“In 1998, we chose the FreeBSD community to help
us breathe life into our vision of network security.
Today, we are in a position to help this community
realize its own vision,” Fabien Thomas, Stormshield’s
Chief Innovation Officer, said last December.
Stormshield’s financial contribution helps the

platform with its development and the recruitment of
new developers. 
 
Source:
https://www.stormshield.com/stormshield-freebsd-re
newal-silver-sponsorship/

EuroBSDcon 2017
EuroBSDcon is the premier European conference on
the open-source BSD operating systems attracting
about 250 highly skilled engineering professionals,
software developers, computer science students
and professors, and users from all over Europe and
other parts of the world. The goal of EuroBSDcon is
to exchange knowledge about the BSD operating
systems, facilitate coordination and cooperation
among users and developers. 
 
The conference will be held at the Espace Saint
Martin in Paris the 21-24 September 2017.

Source: https://2017.eurobsdcon.org/

QtWebEngine Landed
August 18th, 2017: The long-awaited QtWebEngine
-- the Qt port of the Blink engine that also powers
the Chromium browser -- has landed in the official
ports tree. This completes the portfolio of Qt5
modules on FreeBSD, and paves the way for
browser- and application updates that depend on a
reasonably-modern web-rendering engine.

Source:
https://freebsd.kde.org/news.php#itemQtWebEngine
Landed

 
OPNsense 17.7 Released
The final release of version 17.7 “Free Fox” includes
highlights such as SafeStack application hardening,
the Realtek re(4) driver for better network stability, a
Quagga plugin with broad routing protocol support

9

mailto:info@iXsystems.com
mailto:info@iXsystems.com
http://www.ixsystems.com/TrueNAS
http://www.ixsystems.com/TrueNAS
https://www.ixsystems.com/blog/truenas-v11/
https://www.ixsystems.com/blog/truenas-v11/
https://www.stormshield.com/stormshield-freebsd-renewal-silver-sponsorship/
https://www.stormshield.com/stormshield-freebsd-renewal-silver-sponsorship/
https://www.stormshield.com/stormshield-freebsd-renewal-silver-sponsorship/
https://www.stormshield.com/stormshield-freebsd-renewal-silver-sponsorship/
https://2017.eurobsdcon.org/
https://2017.eurobsdcon.org/
https://freebsd.kde.org/news.php#itemQtWebEngineLanded
https://freebsd.kde.org/news.php#itemQtWebEngineLanded
https://freebsd.kde.org/news.php#itemQtWebEngineLanded
https://freebsd.kde.org/news.php#itemQtWebEngineLanded

and the Unbound resolver as the new default.
Additionally, translations for Czech, Chinese,
Japanese, Portuguese and German have been
completed for the first time during this development
cycle. 
 
The focus in OPNsense has shifted to improving and
streamlining its various systems and providing
continuous updates, which amounts to over 300
individual changes made since 17.1 so far. The
plugin infrastructure is growing as well thanks to our
awesome contributors Frank Wall, Frank Brendel,
Fabian Franz and Michael Muenz. And we, last but
not least, have been working more closely than ever
with HardenedBSD by unifying our ports
infrastructure. 
 
Source:
https://opnsense.org/opnsense-17-7-released/

The NOVA Filesystem
NOVA is intended to be such a filesystem. It is not
just unsuited for regular block devices, it cannot use
them at all since it does not use the kernel's block
layer. Instead, it works directly with storage mapped
into the kernel's address space. A filesystem
implementation gives up a lot if it avoids the block
layer: request coalescing, queue management,
prioritization of requests, and more. On the other
hand, it saves the overhead imposed by the block
layer and, when it comes to nonvolatile memory
performance, cutting down on CPU overhead is a
key part of performing well.

Source: https://lwn.net/Articles/729812/

HAMMER2: Inital
Release, Next Release
There will be a bootable, single-image version of
HAMMER2 in the next DragonFly release. Matthew

Dillon has a note about what will be in place at that
point, and you can always look at the recent
commits.

Source:
https://www.dragonflydigest.com/2017/08/21/20127.
html

DragonFlyBSD 4.8.1
Released
DragonFly version 4.8 brings EFI boot support in the
installer, further speed improvements in the kernel, a
new NVMe driver, a new eMMC driver, and Intel
video driver updates.

The details of all commits between the 4.6 and 4.8
branches are available in the associated commit
messages for 4.8RC, 4.8.0, and 4.8.1.

Changes

• Support for eMMC booting, and mobile and
high-performance PCIe SSDs

• EFI support

• Improved graphics support

• Improved kernel performance

Other user-affecting changes

• Kernel is now built using -O2.

• VKernels now use COW, so multiple vkernels can
share one disk image.

• powerd() is now sensitive to time and temperature
changes.

• Non-boot-filesystem kernel modules can be
loaded in rc.conf instead of loader.conf.

Source: https://www.dragonflybsd.org/release48/

10

https://opnsense.org/opnsense-17-7-released/
https://opnsense.org/opnsense-17-7-released/
https://lwn.net/Articles/729812/
https://lwn.net/Articles/729812/
https://www.dragonflydigest.com/2017/08/21/20127.html
https://www.dragonflydigest.com/2017/08/21/20127.html
https://www.dragonflydigest.com/2017/08/21/20127.html
https://www.dragonflydigest.com/2017/08/21/20127.html
http://lists.dragonflybsd.org/pipermail/commits/2017-March/625576.html
http://lists.dragonflybsd.org/pipermail/commits/2017-March/625576.html
http://lists.dragonflybsd.org/pipermail/commits/2017-March/625648.html
http://lists.dragonflybsd.org/pipermail/commits/2017-March/625648.html
http://lists.dragonflybsd.org/pipermail/commits/2017-August/626150.html
http://lists.dragonflybsd.org/pipermail/commits/2017-August/626150.html
https://www.dragonflybsd.org/release48/
https://www.dragonflybsd.org/release48/

11

www.balabit.com

Among clouds

 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second

zero message loss due to the

Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition

product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

SMARTOS

For those who don’t know it, DTrace, or Dynamic
Tracing, is a powerful diagnostic tool introduced in
the Solaris 10 OS.

DTrace

Since its inception, it has been implemented in other
operating systems, the most noteworthy being
FreeBSD and Mac OS X. I remember checking out
Sun Microsystem web page and read about DTrace.
It seemed a tool that could solve to pinpoint a lot of
issues, and in fact in expert hands it could.
Additionally, it was a key tool that helped porting of
KVM to illumos done by the SmartOS team at Joyent
http://dtrace.org/blogs/rm/2011/08/16/visualizing-kv
m/.

The first time I used it was around in 2008. I ran a
Neverwinter Nights
(http://neverwinternights.info/dedicatedserver.htm)
persistent world. I used Solaris 10 with ZFS and
BrandZ zone that ran Centos at that time. Using
DTrace, I discovered several issues with the scripts
that we created for our persistent world. We found
out that there were several scripts calculating time,
and that took a toll on the server. Our server was a

mighty Dual-Pentium 3 with 512 MB of RAM, and it
worked great.

In this article, we will take a look at DTrace and what
cool things it could do for you.

First, we will need an application to instrument. I
have chosen a fairly known application called
Minecraft.

We will use DTrace to see what we could observe.
However, we will not deal with the details on how to
create our own scripts. For details on how to create
DTrace scripts, here is a DTrace guide:
http://dtrace.org/guide/preface.html.

Therefore, the aim of this article is to show you how
great DTrace is and what you could do to exploit its
magnificent features.

What things do we need?

A SmartOS SmartMachine (it’s a native zone).

Download Minecraft Server Latest version
https://mcversions.net/

12

Application Observability
on SmartOS 
Using Dtrace Quickstart

http://dtrace.org/blogs/rm/2011/08/16/visualizing-kvm/
http://dtrace.org/blogs/rm/2011/08/16/visualizing-kvm/
http://dtrace.org/blogs/rm/2011/08/16/visualizing-kvm/
http://dtrace.org/blogs/rm/2011/08/16/visualizing-kvm/
http://neverwinternights.info/dedicatedserver.htm
http://neverwinternights.info/dedicatedserver.htm
http://dtrace.org/guide/preface.html
http://dtrace.org/guide/preface.html
https://mcversions.net/
https://mcversions.net/

Download the Solaris x64 version of the JDK
http://www.oracle.com/technetwork/java/javase/dow
nloads/jdk8-downloads-2133151.html

The DTrace toolkit
https://github.com/opendtrace/toolkit

You can download SmartOS from
https://wiki.smartos.org/display/DOC/Download+Sm
artOS There is a vmware version to spin a vm, or
you could also provision a smartmachine at Joyent
at:
https://docs.joyent.com/public-cloud/getting-started

If you are using a vm, you need to take a look at this
documentation
https://wiki.smartos.org/display/DOC/How+to+creat
e+a+Virtual+Machine+in+SmartOS

that explains how to create a SmartOS zone. If this is
too long for you to read, just use this machine
description json file.

[root@krondor /opt/payloads]# cat
smartos.json

{

 "brand": "joyent",

 "image_uuid":
"a0dd9320-674b-11e7-9483-2ff90b43b416",

 "alias": "minecraftSmartOS",

 "hostname": "minecraft00",

 "max_physical_memory": 3024,

 "quota": 30,

 "resolvers": ["8.8.8.8",
"192.168.1.1"],

 "nics": [

 {

 "nic_tag": "admin",

 "ip": "192.168.1.147",

 "netmask": "255.255.255.0",

 "gateway": "192.168.1.1"

 }

]

}

Modify your network accordingly, then to provision
the zone, just use the vmadm tool
https://smartos.org/man/1m/vmadm

$ vmadm -f create smartos.json

That’s it! Now to check what zones you are currently
running, just type:

$ vmadm list

After executing vmadm, you should see a UUID
returned. We will use it to login into the zone using
zlogin command. https://illumos.org/man/1/zlogin

13

Figure 1. vmadm list

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://github.com/opendtrace/toolkit
https://github.com/opendtrace/toolkit
https://wiki.smartos.org/display/DOC/Download+SmartOS
https://wiki.smartos.org/display/DOC/Download+SmartOS
https://wiki.smartos.org/display/DOC/Download+SmartOS
https://wiki.smartos.org/display/DOC/Download+SmartOS
https://docs.joyent.com/public-cloud/getting-started
https://docs.joyent.com/public-cloud/getting-started
https://wiki.smartos.org/display/DOC/How+to+create+a+Virtual+Machine+in+SmartOS
https://wiki.smartos.org/display/DOC/How+to+create+a+Virtual+Machine+in+SmartOS
https://wiki.smartos.org/display/DOC/How+to+create+a+Virtual+Machine+in+SmartOS
https://wiki.smartos.org/display/DOC/How+to+create+a+Virtual+Machine+in+SmartOS
https://smartos.org/man/1m/vmadm
https://smartos.org/man/1m/vmadm
https://illumos.org/man/1/zlogin
https://illumos.org/man/1/zlogin

Finally, let’s login into our newly created zone, in my
case:

$ zlogin
f7c10197-f810-c05a-89c8-f53f421ab4b1

Create the user which will be used to run the
minecraft server. In my case, the user is mcserver.
Check the useradd manpage to create it, then,
execute the following:

mcserver@minecraft00:~$ su - mcserver

mcserver@minecraft00:~$ wget
https://launcher.mojang.com/mc/game/1.12.1/server
/561c7b2d54bae80cc06b05d950633a9ac95da816/s
erver.jar

mcserver@minecraft00:~$ screen

Now, we could start the server, but as we are going
to instrument the JVM, there are a couple of more
steps we need first. We cannot start instrumenting
using the hotspot dtrace provided (a provider gives
us probes which enable us to instrument the calls of
the program being DTraced). Bryan Cantrill (Joyent’s
CTO and father of DTrace), clearly explains this:

The problem here is that, on SmartOS (and other
illumos variants -- as well as their proprietary Solaris
cousins), the DTrace module in the JVM is lazily
loaded (that is, the DOF was compiled with -x
lazyload). As a result, the DTrace probes are not
loaded until they are explicitly enabled. There are two
ways to deal with this. The first is that, you command
DTrace to enable the specific probes in question,
forcing the target process to load its probes. This
requires (at least) the ID of the target process. On

illumos variants (SmartOS, OmniOS, etc.), you can
effectively undo the lazy loading of the DTrace
probes (and stack helper) by using an audit library
designed for the task. This library --
/usr/lib/dtrace/libdtrace_forceload.so and its 64-bit
variant, /usr/lib/dtrace/64/libdtrace_forceload.so --
will effectively force the DTrace probes to be loaded
when the process starts, giving you USDT probes
and the jstack() action for all such processes. To do
this for 32-bit JVMs, launch Java with the
LD_AUDIT_32 environment variable set:

export
LD_AUDIT_32=/usr/lib/dtrace/libdtrace_forceload.so

For 64-bit JVMs:

export
LD_AUDIT_64=/usr/lib/dtrace/64/libdtrace_forceload
.so

Therefore, before running the server, we need to do
the following:

mcserver@minecraft00:~$ export
LD_AUDIT_64=/usr/lib/dtrace/64/libdtrac
e_forceload.so

Start the server and enable DTraceProbes

mcserver@minecraft00:~$ java -Xmx2024M
-Xms2024M -XX:+ExtendedDTraceProbes
-jar minecraft_server.jar nogui

At this moment, we could start instrumenting the
JVM that is running Minecraft.

Detach from screen (press Ctrl+a+d) and exit the
mcserver login. Now as root, let’s start downloading
the DTrace toolkit.

14

Figure 2. Create the user

https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar
https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar
https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar
https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar
https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar
https://launcher.mojang.com/mc/game/1.12.1/server/561c7b2d54bae80cc06b05d950633a9ac95da816/server.jar

As the name implies, it has several scripts classified
by area of interest, and in our case, we will check the
Java folder.

Let’s clone it from github. We will fetch the illumos
branch.

[root@minecraft00 ~] git clone -b
illumos

https://github.com/opendtrace/toolkit

The DTrace toolkit was created by Brendan Gregg
http://www.brendangregg.com/dtracetoolkit.html ,
and even if you are not a developer, you could
leverage a lot using the scripts created. Let’s go to
the Java folder of the DTrace toolkit

For example, if you want to instrument Java object
allocation, execute the following script j_objnew.d

[root@minecraft00 ~/toolkit/Java]#
./j_objnew.d

 
This script will generate a report on the allocations
done by the Minecraft server. For our case, it is the
only JVM running at the moment in our machine. As
you can see (Figure 3), the first part of the report
shows the distribution of bytes per PID and class,
take for example the following distribution.

The Figure 4 shows that for the java.lang.String
Class, it has allocated 100 objects with a requested
size of 16 bytes.

What about if you want to know which methods are
being executed at the moment?

That’s easy, just execute j_methodcalls.d script.

15

Figure 3. Report

Figure 4. java.lang.String Class

https://github.com/opendtrace/toolkit
https://github.com/opendtrace/toolkit
http://www.brendangregg.com/dtracetoolkit.html
http://www.brendangregg.com/dtracetoolkit.html

As shown on Figure 5, there are 2 calls to the
method shuffle from java.util.Collections Class.
(http://docs.oracle.com/javase/6/docs/api/java/util/C
ollections.html).

Without knowing how to use DTrace you already
have a lot of information. That’s the power of the
DTrace toolkit. It does all the heavy lifting for you. If
you need more specific information, just take a look
at the scripts and along with the DTrace guide, you
could start tweaking and customize based on what
you really want to instrument.

Conclusion

With those examples, you could realize the power of
DTrace. Moreover, it’s really useful for performance
analysis and just to know what is going on at any
instant in your application. DTrace is battle tested
and Production safe. Therefore, you could
instrument without fear. As we saw in the JVM case,
we need to enable DTraceProbes with
-XX:+ExtendedDTraceProbes flag that will make
things go a little slower. However, that is a small
price to pay. DTrace can instrument other
languages/vms like Javascript (there are nodejs
probes courtesy of Joyent), ruby, perl, go, C,
C++,instrument the kernel, etc. If you learn to use
DTrace effectively, you will suffer less headaches

with production issues (if you happen to run
SmartOS or other Illumos distro). Furthermore, you
will be able to profile your applications easier and
faster.

This article was to get you interested in DTrace and
try it. If your application only runs in Linux, you could
use an lx branded zone and still enjoy the benefits of
DTrace, and run your Linux application on a illumos
kernel with DTrace.

16

Figure 5. 2 calls to the method shuffle from java.util.Collections Class

About the Author

Carlos Antonio Neira Bustos has worked
for several years as a C/C++ developer and

kernel porting and debugging enterprise legacy
applications. He is currently employed as a C
developer under Z/OS. There, he debugs and
troubleshoots legacy applications for a global
financial company. Also, he is engaged in

independent research on affective computing.

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html

17

MODERN. UNIFIED. ENTERPRISE-READY.

Copyright © 2017 iXsystems. TrueNAS is a registered trademark of iXsystems, Inc. All rights reserved.

BORN TO DISRUPT

INTRODUCING THE TRUENAS® X10, THE MOST COST-EFFECTIVE ENTERPRISE
STORAGE ARRAY ON THE MARKET.

Perfectly suited for core-edge configurations and enterprise workloads such as backups,
replication, and file sharing.

Modern: Not based on 5-10 year old technology (yes that means you legacy storage vendors)

Unified: Simultaneous SAN/NAS protocols that support multiple block and file workloads

Dense: Up to 120 TB in 2U and 360 TB in 6U

Safe: High Availability option ensures business continuity and avoids downtime

Reliable: Uses OpenZFS to keep data safe

Trusted: Based on FreeNAS, the world’s #1 Open Source SDS

Enterprise: 20TB of enterprise-class storage including unlimited instant snapshots and advanced
storage optimization for under $10,000

The new TrueNAS X10 marks the birth of a new entry class of enterprise storage. Get the full
details at iXsystems.com/TrueNAS.

PROGRAMMING

This article will introduce the reader to use LIBC in
IA-32 Assembly code. The C calling convention will
be discussed, giving the readers the necessary
knowledge to interface C code into their Assembly
programs.

For this article, a sample will be used in a Conway’s
Game of Life, fully written in IA-32 Assembly. The
discussed code works in FreeBSD, NetBSD,
OpenBSD, MINIX, Linux, Solaris and also Windows.
The text assumes at least a basic knowledge of
Assembly programming by the readers.

Why Assembly is still important?

The Assembly language is the closest you can get to
the CPU after raw machine code. If you have
intentions of becoming a system programmer, you
have to dedicate some time writing code in this
programming language. Also, if you want to dive into
reverse engineering, exploits, compilers, operating
systems and related subjects, understanding the
Assembly is mandatory.

Moreover, Assembly can teach you important things
about how computers work, in the end, you can
become a better programmer by pushing your limits
with this bare-bone programming language.

So many types of flavors...

Unlike other high level languages, Assembly boasts
of tons of different flavors. In fact, it depends on the
current CPU which you are using. The most popular
Assembly type is the IA-32/64.

The IA platform stands for the set of instructions
codes designed for the Pentium processors. For
32-bit architectures, there is IA-32 whereas for 64-bit,
IA-64 exists. This article focuses in IA-32 instructions.

Besides the types of sets of instructions, there are
different types of syntaxes in this language. The two
most popular are Intel and AT&T syntaxes. The main
difference between the two is the order of parameters
passed by the instructions mnemonics. The
parameters in one syntax look inverted when
compared with another syntax. The AT&T syntax
tends to indicate the destination before the source.

In open-source world, maybe the AT&T syntax is
more popular because of this syntax being adopted
by GCC. GNU adopts this syntax in its assembler
called GAS, and also for the C inline Assembly.

18

Taking Advantage of LIBC
to Write Portable Assembly
Programs

An assembler is the same of a compiler. It checks if
the code makes sense and generates the suitable
executable output from that input.

An inline Assembly is a way of wrapping a set of
explicit Assembly statements into another
programming language. The C language is the most
famous programming language which implements
this feature. Truly, it is implemented by the compilers,
and there is no standard about how to inline it. Inline
Assembly puts programmers in control, allowing
them to optimize the code by themselves. GCC
compiler implements one of the most powerful inline
Assembly interfaces. However, inline Assembly is out
of the article’s scope.

Main fallacies about Assembly

Since I started programming, I have heard several
tales about Assembly being an impossible language.
Some perceived it as a useless language because to
them, it was impossible to produce portable code or
fully functional programs and so on.

As I earlier stated, Assembly puts you in control and
pushes you to learn more about your
machine/environment.

The language is far from being useless since even
the modern high-level programming languages must
generate Assembly stuff if an executable code is
desired. If compilers are pretty good today on
generating Assembly, taking final users away from
Assembly, for sure certain skillful Assembly
programmers are still today doing a great job behind
the scenes for several popular compilers. A number
of people have to do the task which others perceive
as a dirty job.

Currently, system programmers still must deal with
Assembly language.

Not always can a programmer debug a code with all
loaded symbols. In cases like that, knowledge of
Assembly can save you hours or even make possible
you to identify and fix the bug by yourself.

Another fallacy is about not being possible to
produce something portable with this Language. In
this case, I will guide you through some parts of a

simple but complete implementation of Conway’s
Game of Life in IA-32 Assembly. This implementation
can run in: FreeBSD, NetBSD, OpenBSD, MINIX,
Linux, Solaris and also Windows. At the end of this
article, I expect you to dismiss the fallacy by
accepting that with the Assembly language, it is
possible accomplish critical tasks. This is because
under the hood, any compiler uses it. Doing it by
ourselves can be tough, but tough is not impossible.

Combining two consistent, direct and
powerful worlds

To reiterate my earlier statement, proficient Assembly
programmers can improve the performance of any
software with smart usages of the right CPU
instructions. Because of this, C compilers have been
offering the possibility of embed Assembly code into
C code.

However, after C language became so popular, the
following observation can be made these days: if in
the early days, inline Assembly helped programmers
apply fine performance tunings in their C code, today,
C language can help Assembly programmers
produce a more portable code.

The truth is that almost all operating systems you
have ever used contain a standard C library
implementation. This makes LIBC a kind of
omnipresent piece of software. C language was
designed to take into consideration portability, and in
practice, it has proved to be portable. If you do not
want too many surprises for porting software,
prioritize the LIBC usage and you will enjoy an easier
process.

The C calling convention

The C calling convention is a standard created to
solve issues on how to pass to and return values
from a function. When this standard has been
adopted, it is easy to port, export and also import
functionalities.

This convention in IA-32 architecture states that the
function arguments must be passed using the stack.
In order to return the function result, the EAX register
is used. If the function returns 64-bit values, the

19

result is put into EDX:EAX. For floating point results,
the data is put into the FPU register called ST(0).

With this convention, you should be able to adopt
prologues and epilogues when writing your functions.
The Code Listing 1 shows a prologue and an
epilogue being applied. By the way, the Code Listing
1 does the same as the ENTER and LEAVE
instructions.

As you may know, the Assembly call instruction
pushes to stack the instruction pointer. The prologue
and epilogue are used to save this data to avoid any
form of corruption since the stack will also be used to
manipulate local variables of the function. In this
case, when the ret instruction is applied, the CPU will
exactly know where to return.

When calling a function, with C calling convention,
the function parameters must be pushed in the
reverse order. Following this order the first accessible
parameter onto stack will be the first parameter
expected by the function.

How local function data are defined

After the function prologue is done, the register, EBP,
will point to the top of the stack. Therefore, if you
want to reserve space to a 32-bit value, you should
use -4(%ebp). The minus signal is implies that the
stack grows up from top to bottom. If a second
variable is desired, it should start at the address
“indexed” by -8(%ebp).

Assembly does not use data types. The
determination of size and nature of your data is
always up to you.

How to clean up the stack

The caller should clean up the stack after function
returns. This should be done by simply adding to the
ESP register the number of bytes pushed into the
stack. You should add because the stack grows
upside down. The Code Listing 2 shows this clean up
procedure. Using the add instruction to restore the
stack tends to be more efficient and easier than
saving the address after pop it or move from
somewhere.

The Conway’s Game of Life

The Game of Life stands for a cellular automaton.
Cellular automata are discrete models. They are built
from a finite grid, each grid consists a finite number
of states; those states vary according to deterministic
rules. Cellular automata are studied in mathematics,
physics, biology, computer science among other
scientific fields. Maybe the Conway’s Game of Life is
the most popular cellular automaton. The grids have
only two states: alive or dead.

The rules applied for each grid cell is:

• Any live cell with fewer than two live neighbors
dies, as if caused by under-population.

20

Code Listing 1: The function prologue and epilogue.

1 f unc :

2 pu s h l %ebp

3 movl %esp , %ebp

4 . . .

5 movl %ebp , %esp

6 pop l %ebp

7 r e t

Code Listing 2: How to clean up the stack after a function call.
1 pu s h l %eax

2 c a l l f unc

3 add l $4 , %esp

• Any live cell with two or three live neighbors lives
on to the next generation.

• Any live cell with more than three live neighbors
dies, as if by overpopulation.

• Any dead cell with exactly three live neighbors
becomes a live cell, as if by reproduction.

Only using those simple rules, the Game of Life is
capable of producing interesting finite and infinite
patterns. All that a player needs to do is to define the
initial state of the grid.

Now, let me show you how this game was
implemented using IA-32 Assembly and LIBC.

A multi-platform Game of Life in
Assembly

Currently, the described code can run in FreeBSD,
NetBSD, OpenBSD, MINIX, Solaris, Linux and
Windows. In this article, I will only focus on FreeBSD,
NetBSD, OpenBSD and MINIX aspects, besides, of
course the platform independent code relevant for
implementing the main game’s logic. If you are
interested, you can download the code at
https://github.com/rafael-santiago/life and check the
particularities for the non-discussed operating
systems.

All components of the game were written in a single
source code file, called ‘life.s’. This was done to seek

minimalism and the possibility of building it without
any build system.

The adopted syntax assembly is the AT&T, since it is
the syntax adopted by GAS. By the way, the GNU
Assembler is our assembly of choice for this ‘DIY’
little journey.

The code sections

Although it appears a simple task implemented in a
single file having 1533 lines, this file has got sections.
The ‘.data’ section is a place that you can use to
declare static data.

As you may know from assembly, everything is about
addresses, even a variable is a chunk of memory
having a start offset. This start offset should be
labeled, and the data be defined as well. The
general form of data definition in GNU Assembler is:

<label>:

 <type> <related_data>

For this game of life, I have implemented the option
of defining by command line, the color of the alive
and dead cells. In this respect, the user should pass
the options ‘-–alive-color=<color>’ and ‘--dead-
color=<color>’. The supported colors are black, red,
green, yellow, blue, magenta, cyan, and white.

In a higher level programming language, the list of
supported colors could be defined in an array. For

21

Code Listing 3: Defining the array of supported colors.

1 c o l o r b l a c k :

2 . a s c i z ” b l a c k ”

3 co l o r r ed :

4 . a s c i z ” red ”

5 co l o r g r een :

6 . a s c i z ” green ”

7 c o l o r y e l l ow :

8 . a s c i z ” y e l l ow ”

9 c o l o r b l u e :

10 . a s c i z ” b l u e ”

11 co lor magenta :

12 . a s c i z ”magenta”

13 co lo r cyan :

14 . a s c i z ” cyan”

15 co l o r wh i t e :

16 . a s c i z ” wh i t e ”

17 c o l o r s :

18 . i n t co l o r b l a ck , co lo r red , co lo r g reen , c o l o r y e l l ow ,

19 co l o r b l ue , color magenta , co lo r cyan , co l o r wh i t e

https://github.com/rafael-santiago/life
https://github.com/rafael-santiago/life

instance, we could use something like ‘char
*suported_colors[] = { “...”, “...” };’.

The Code Listing 3 shows how the array of supported
colors was defined. The address labeled as ‘colors’
stores sequentially eight addresses, being an
indirection to them. This code is designed for IA-32.
Therefore, the int type will express an address
without any problem because the size of int is four
bytes the word size in 32-bit CPUs.

The Code Listing 4 shows how the game board (grid)
was defined. The game board is simply a matrix NxN.
The GNU Assembler offers a short way of defining
repetitive definition tasks.

Many more variables are defined in ‘.data’ section.
However, for brevity, they will be introduced when
needed within the text.

The ‘.bss’ section also defines some variables. All
data defined in ‘.bss’ section is zeroed, and this is the
difference which lies between the two sections. I
defined chunks of data in ‘.bss’ section that I will use
later in the program text as temporary variables. To
mention but a few, ‘argv’ and ‘argc’ are used to
manipulate command line arguments and so on.

The ‘.globl’ does not stand for a section, but rather, it
is important because it makes the symbol visible
along the entire program. We are interfacing C code
with assembly. In doing so, we need to declare the
global label ‘_start’ because for the glibc, it is
equivalent to the main function, the program entry
point.

The entry point

The general idea of the entry point is to register the
argc and argv data, and then try to read several
command line options. If some error is found, we
divert the execution flow to some error handling and
so it exits the program. Otherwise, if all reading stuff

was executed without any error, the game loop is
called.

The Code Listing 5 shows some parts of the main
function (‘_start’). The code snippet shows some
calls to the LIBC function signal(). The intention here
is to detect SIGTERM(15), SIGINT(2) and
SIGQUIT(3). When one of these signals are
detected, the program exits because the passed
callback function, ‘$sigint_watchdog’, is called and it
aborts the program by setting the variable quit_game
to 1. The user can easily send a SIGINT just by
typing CTRL+c during the game’s execution. As you
can see, the C calling convention is followed. These
signals must be represented as specific values to be
POSIX compliant.Therefore, there is no problem with
using hardcoded values for them. They will never
change in compliant UNIXes.

The Code Listing 5 also introduces a powerful feature
from GNU Assembler: the ‘.ifdef/.ifndef’ compiler
directives. They tend to be similar to C directives but
instead of using the ‘#’ symbol, you use ‘.’. Still in
Code Listing 5, you may get curious to know what the
statement ‘call *clrscr’ does. Well, the ‘clrscr’ is a
function pointer (when you want to call a function,
you should call what it is pointing to). I have used this
trick to provide a way of supporting ansi terminals in
Windows, in case of users running it in MSYS,
Cygwin. The way of clearing the screen is different
with a colored output, but Windows stuff is out of
scope here.

The get_option function

The get_option function introduces a string
instruction which comes in handy when scanning
data. The mnemonic of this instruction is ‘scansb’.

This instruction is combined with another one called
‘repne’. The get_option function is responsible for
reading the user option passed as a parameter
returning the read buffer. If the user option was not

22

Code Listing 4: Defining the game board.

1 . equ CELL BYTES PER ROW, 45
2
3 c e l l s :
4 . r e p t (CELL BYTES PER ROW ⇤ CELL BYTES PER ROW)
5 . by te 0x00
6 . endr

passed by the user, the get_option would return a
default value also passed as a parameter.

The ‘scansb’ instruction scans a buffer referenced by
the EDI register, and the most important argument:

23

Code Listing 5: Defining the game board.

1 . i f n d e f WIN32
2 . g l o b l s t a r t
3 s t a r t :
4 . e l s e
5 . g l o b l main
6 main :
7 . e n d i f
8
9 pu s h l $ s i g i n t watchdog

10 pu s h l $2
11 c a l l s i g n a l
12 add l $8 , %esp
13
14 pu s h l $ s i g i n t watchdog
15 pu s h l $3
16 c a l l s i g n a l
17 add l $8 , %esp
18
19 pu s h l $ s i g i n t watchdog
20 pu s h l $15
21 c a l l s i g n a l
22 add l $8 , %esp
23
24 movl %ebp , %edx
25 movl %esp , %ebp
26 movl %ebp , %ecx
27 add l $8 , %ecx
28 pu s h l %ecx
29 pu s h l (%ebp)
30 c a l l set a rgc argv
31 movl %ebp , %esp
32 movl %edx , %ebp
33
34 . . .
35
36 pu s h l $1
37 pu s h l $0
38 pu s h l $opt i on he lp
39 c a l l ge t opt ion
40 add l $12 , %esp
41
42 game start :
43 . . .
44
45 # INFO(Ra f a e l) : Load ing the i n i t i a l
46 # gene r a t i o n d e f i n e d by the u s e r .
47
48 c a l l l d 1 s t g e n
49 c a l l ⇤ c l r s c r
50 c a l l l i f e
51
52 c a l l ⇤ c l r s c r
53
54 . . .
55
56 bye :
57 pu s h l %eax
58 c a l l e x i t

the desired byte to be matched against EDI content.
This byte should be stored in AL register.

This instruction, when combined with ‘repne’,
provides an efficient buffer parsing operation. The
‘repne’ instruction will repeat the passed instruction
and increments the EDI register by one until the ECX
register hits zero. However, the ‘repne’ instruction
also has a logical side which inspects the zero flag
(ZF). If the zero flag status indicates a ‘not equal’
case, (repne) the repetition is aborted too.

In case of the get_option, the ‘repne scansb’ is used
for getting the length of the passed option that should
be read from the command line arguments array
referenced by ‘argv’. The ‘repne scansb’ loop ends
when a null byte is hit. The last trick to get the size of
the string is the execution of the instructions ‘subw
$0xfffe, %cx’ and ‘neg %cx’. After finding a null byte,
the ECX register will store (65535 – size in bytes of
the passed option), the subtraction and inversion
using ‘neg’ eliminates the 65535 from the equation,
allowing only the size in byte of the passed option. In
other words, the result will be a negative number.
The neg will get the absolute value from it. Yes, we
could have used ‘strlen’ instead of this tricky code.
But after using it repeatedly, it becomes natural and
easier.

The instruction, ‘repe cmpsb’, is similar to the ‘repne
scansb’. However, here, the bytes will be compared
while they are equal. In this respect, we are verifying
if the desired option was passed on the command
line.

The Code Listing 6 lists the get_option function.

Handling array-like data in Assembly

Maybe the quick discussion about get_option
function has sparked some doubt in you. Since the
command line content is stored in ‘argv’, the
get_option function iterates over this array. How does
the next array data read, compared with the function
argument?

The code uses the instruction ‘lea’. This function
loads the effective address from some origin into the
passed register. In this case, the ‘leal’ is being used
to load a long (4-bytes) into the passed register.

The ‘lea’ instruction is combined with indirect
addressing. Indirect addressing is a name of a
technique that stands for access data stored into a
memory location. So you have a pointer that points to
another place where the relevant data is stored.

In GNU Assembler, the indirect address syntax is:

(<register>)

When you indicate a register wrapped by
parentheses, you are referencing the memory
location pointed by the address loaded into the
related register.

If you want to look for N bytes forward, you should
use 4(<register>), and -4(<register>) for N bytes
backward.

However, the indirect address syntax in GNU
Assembler is much more expressive than it. You can
also use indexed memory locations:

base_address(<offset>, <index>, <size>)

This comes in handy for array typed data. An array
in assembly is a sequential data chunk, even
multidimensional arrays.

Let’s pick a sample of 2x2 byte matrix. It stands for
4-bytes sequentially defined. So, if you want to
access row 1 and column 0, you can do it easily
using indexed memory location syntax, ‘lea’
instruction, and some basic math:

movl $1, %ebx

imul $2, %ebx # multiplies the total of
bytes per row by ebx (result in ebx)

movl $0, %edx # the column index

leal matrix(%ebx, %edx, 1), %edx

Take a look:

Sequentially defined data for a 2x2 byte matrixSequentially defined data for a 2x2 byte matrixSequentially defined data for a 2x2 byte matrixSequentially defined data for a 2x2 byte matrix
Position 0 Position 1 Position 2 Position 3
‘A’ ‘B’ ‘C’ ‘D’

[row index x total of byte per row] 1 x 2 = 2 → “Offset
= 2”

24

[offset + column index] 2 + 0 = 2 → “Position = 2”

Then, the item in the coordinate (1, 0) is ‘C’.

In a ‘high level’ matrix, the (1, 0) item will also be ‘C’ as
shown below:

‘High level’ matrix definition‘High level’ matrix definition
‘A’ (0,0) ‘B’ (0, 1)
‘C’ (1, 0) ‘D’ (1, 1)

The ld1stgen function

The ld1stgen strongly uses the indexed memory
location technique. All that this function does is to load
the initial game board state. Based on this initial state,
the cellular automata will evolve in some finite or
infinite pattern.

The game works by command line. For defining a cell
as alive, the user should pass the option “--row-
number, column-number.”.

The ‘ld1stgen’ traverses the game board verifying if the
option , ‘-–r,c.’, was passed. If it was the game
board[r][c] will be loaded with the value 1, signaling an
alive cell. Otherwise, it will remain as 0, a dead cell.

This function uses ‘sprintf’ to format the desired option
passed on the current row and column indexes. The
formatted buffer is passed to ‘get_option’ function.

The Code Listing 7 shows the most relevant parts of
this function.

The main game loop

The main game loop is implemented by the function
‘life’. This loop is in the Code Listing 8. The most
important part of this loop is the instruction ‘call
*genprint’, it prints to the screen the current game
board state. The genprint is a pointer to a function.
This is done because in some operating systems
where ansi term capabilities are not present, we still
can print the game board without ansi color codes.
After printing the game board status, it would expect
for a key event or simply sleep for some period using
‘usleep’.

25

Code Listing 6: Getting the options passed by command line.

1 . t ype get opt ion , @ func t i on
2 get opt ion : # get opt ion (opt ion , d e f a u l t , i s boo l e an)
3
4 # INFO(Ra f a e l) : Gets the op t i o n l o a d i n g i t i n t o EAX
5 # i f i t does not e x i s t l o ad the d e f a u l t
6 # va l u e from the s t a c k (C S t y l e)
7
8 pu s h l %ebp
9 movl %esp , %ebp

10
11 cmp $1 , a rgc
12 j e ge t op t i on de f au l t
13
14 movl 8(%ebp) , %ed i
15 pu s h l %ed i
16 movl $ 0 x f f f f , %ecx
17 movb $0 , %a l
18 c l d
19 repne s ca sb
20 pop l %ed i
21
22 subw $0 x f f f e , %cx
23 neg %cx
24
25 . i f n d e f WIN32
26 movl argv , %edx
27 . e l s e
28 x o r l %edx , %edx
29 l e a l a rgv (, %edx , 4) , %edx
30 . e n d i f
31
32 get opt ion parse a rgs :
33 cmp $1 , 16(%ebp)
34 j n e get opt ion parse cur r a rg
35
36 # INFO(Ra f a e l) : Only p a r s e s boo l ean op t i o n s
37 # tha t a r e e qu a l s i n l e n g t h .
38
39 pu s h l %ecx
40 pu s h l %ed i
41
42 movl (%edx) , %ed i
43 movl $ 0 x f f f f , %ecx
44 movb $0 , %a l
45 c l d
46 repne s ca sb
47
48 pop l %ed i
49
50 subw $0 x f f f e , %cx
51 neg %cx
52
53 movl %ecx , %ebx
54 pop l %ecx
55
56 cmp %ecx , %ebx
57 j n e get opt ion parse args go next
58
59 get opt ion parse cur r a rg :
60 pu s h l %ed i
61 pu s h l %ecx
62
63 movl (%edx) , %e s i
64
65 r epe cmpsb
66
67 movl %ecx , %ebx
68
69 pop l %ecx
70 pop l %ed i
71
72 j n e get opt ion parse args go next
73
74 cmp $1 , 16(%ebp)
75
76 j e get opt ion parse args set boo lean
77
78 movl %e s i , %eax
79 jmp ge t op t i on ep i l ogue
80
81 get opt ion parse args set boo lean :
82 movl $1 , %eax
83 jmp ge t op t i on ep i l ogue
84
85 get opt ion parse args go next :
86 add l $4 , %edx
87
88 cmp $0 , (%edx)
89 j n e get opt ion parse a rgs
90
91 ge t op t i on de f au l t :
92 movl 12(%ebp) , %eax
93
94 ge t op t i on ep i l ogue :
95 movl %ebp , %esp
96 pop l %ebp
97 r e t

The remaining functions are related to the game
rules application. For brevity, they will not be
discussed here. In general, they use basic Assembly
instructions such as ‘mov’, ‘cmp’ and jumps. I will
leave those functions as a kind of exercise for the
interested readers.

How to build the code

The code should be built using the GNU Assembler
(gas). If it is the default assembler in your
environment, you can call ‘as’.

26

Code Listing 7: Loading the initial state of the game board.

1 . t ype l d1 s tgen , @ func t i on
2 l d 1 s t g e n : # l d 1 s t g e n ()
3 pu s h l %ebp
4 movl %esp , %ebp
5
6 x o r l %ecx , %ecx
7
8 l d 1 s t g en r l o op :
9

10 x o r l %ed i , %ed i
11 movl %ecx , %ebx
12 imu l $CELL BYTES PER ROW, %ebx
13
14 l d 1 s t gen c l oop :
15
16 pu s h l %ebx
17 pu s h l %ecx
18 pu s h l %ed i
19
20 pu s h l %ed i
21 pu s h l %ecx
22 pu s h l $op t i on ce l l fmt
23 pu s h l $temp str
24 c a l l s p r i n t f
25 add l $16 , %esp
26
27 pu s h l $1
28 pu s h l $0
29 pu s h l $temp str
30 c a l l ge t opt ion
31 add l $12 , %esp
32
33 pop l %ed i
34 pop l %ecx
35 pop l %ebx
36
37 movb %al , c e l l s (%ebx , %ed i , 1)
38
39 i n c %ed i
40 cmp cel l co l max , %ed i
41 j l e l d 1 s t gen c l oop
42
43 i n c %ecx
44 cmp cell row max , %ecx
45 j l e l d 1 s t g en r l o op
46
47 movl %ebp , %esp
48 pop l %ebp
49 r e t

Compiling and linking in MINIX:

 as -olife.o life.s

 ld -Bdynamic life.o -lc -m
elf_i386_minix -dynamic-linker
/usr/libexec/ld.elf_so -olife

Compiling and linking in NetBSD:

 as -olife.o life.s -defsym
__NetBSD__=1

 ld -Bdynamic life.o -lc -m
elf_i386 -dynamic-linker
/usr/libexec/ld.elf_so -olife

27

Code Listing 8: The main game loop.

1 . t ype l i f e , @ func t i on

2 l i f e : # l i f e ()

3 pu s h l %ebp

4 movl %esp , %ebp

5 s u b l $8 , %esp

6
7 x o r l %eax , %eax

8 x o r l %ebx , %ebx

9
10 movl $0 , �8(%ebp)

11
12 gameloop :

13 cmp $1 , quit game

14 j e l i f e e p i l o g u e

15
16 c a l l ⇤ g e n p r i n t

17
18 cmp $1 , i n t e r a c t i v e mode

19 j e gameloop enter wa i t ing

20
21 pu s h l us l eep t ime

22 c a l l u s l e e p

23 add l $4 , %esp

24
25 jmp gameloop gonext

26
27 gameloop enter wa i t ing :

28 l e a l �4(%ebp) , %ecx

29 pu s h l $1

30 pu s h l %ecx

31 pu s h l $0

32 c a l l r ead

33 add l $12 , %esp

34
35 gameloop gonext :

36 c a l l a p p l y r u l e s

37
38 cmp $0 , gene r a t i on n r

39 j e gameloop

40
41 l e a l �8(%ebp) , %edx

42 add l $1 , (%edx)

43 movl gene ra t i on n r , %ecx

44 cmp (%edx) , %ecx

45 j n e gameloop

46
47 l i f e e p i l o g u e :

48 movl %ebp , %esp

49 pop l %ebp

50 r e t

Compiling and linking in OpenBSD:

 as -olife.o life.s -defsym
__OpenBSD__=1

 ld -Bdynamic life.o -lc -m
elf_i386_obsd -dynamic-linker
/usr/libexec/ld.so -olife

Compiling and linking in FreeBSD:

 as -olife.o life.s -defsym
__FreeBSD__=1

 ld -Bdynamic life.o -lc -m
elf_i386_fbsd -dynamic-linker

/usr/libexec/ld-elf.so.1 -olife

The command lines for Linux, Windows, and Solaris
are out of scope for this article. However, the general
idea is almost the same.

The flag -lc is used because the Assembly code is
calling function form LIBC. The -defsym
OS_SYMBOL=1 is used because the code has
conditional directives that will include or ignore some
codes at compile time.

It is important always to generate an i386 elf because
we are using IA-32 Assembly, instructions for 32-bit
bit based CPUs.

Testing the game

The Game of Life has famous patterns, some
patterns are finite and other infinites. One famous
pattern is called ‘Pulsar’. Pulsar has three
generations and after the third, the game board state
backs to the first generation in an infinite loop. In
Figure 1, you can see these three states.

To generate a Pulsar with the discussed code, you
should execute the following command line:

life --2,4. --2,5. --2,6. --4,2. --5,2.
--6,2. --4,7. --5,7. \

> --6,7. --7,4. --7,5. --7,6. --2,10.
--2,11. --2,12. --4,9. \

> --5,9. --6,9. --7,10. --7,11. --7,12.

--4,14. --5,14. --6,14. \  
> --9,4. --9,5. --9,6. --10,2. --11,2.
--12,2. --14,4. --14,5. \

> --14,6. --10,7. --11,7. --12,7.
--9,10. --9,11. --9,12. \

> --10,9. --11,9. --12,9. --14,10.
--14,11. --14,12. --10,14.\

> --11,14. --12,14. --delay=500
--alive-color=cyan

Some specific codes necessary in
discussed platforms

In FreeBSD, it was necessary to define the following
symbols:

.globl environ  
environ:  
 .quad 0  
 
.globl __progname  
__progname:  
 .asciz "life"

28

a: First generation b: Second generation c: Third generation

Figure 1: The infinite pattern called Pulsar.

It is explained by the fact of being linked using libc.
Additionally, in FreeBSD, the library internally uses
the symbols ‘environ’ and ‘__progname’.

In NetBSD and OpenBSD, it was necessary to define
a specific section inside the generated ELF. The
technique is the same but the defined data differs a
little from one platform to another.

In OpenBSD, the following section is necessary:

.section ".note.openbsd.ident", "a"  
 .align 2  
 .int 8  
 .int 4  
 .int 1  
 .asciz "OpenBSD"  
 .int 0  
 .align 2

In NetBSD the section should be:

.section ".note.netbsd.ident", "a"  
 .int 7  
 .int 4  
 .int 1  
 .asciz "NetBSD"  
 .byte 0  
 .int 0

If those sections are not defined, the generated
binary cannot be executed. These sections can be
understood as an identifier for ELFs, for Open and
Net BSD. Executables without them will not run.

Conclusion

In this article, I showed you that it is possible to take
advantage of LIBC in order to create portable
Assembly programs.

Different from high-level languages, Assembly is
closer to the hardware. In this case, the better
approach is to learn about the architecture that you
frequently use.

To learn Assembly is still worthy to date, especially if
you are intending to become a system programmer,
an information security researcher or still enthusiastic
in deeply knowing more about the computer.

The Book, Professional Assembly Language, by
Richard Blum also is a good introduction; it uses
AT&T syntax and GNU Assembly.

The PC Assembly book can be a good introduction
http://pacman128.github.io/pcasm/, it uses INTEL
syntax and NASM.

You can download, study and change the discussed
Game of life implementation at
https://github.com/rafael-santiago/life.

If you have some questions about any part of the
code that was not detailed here for brevity issues,
feel free to contact me.

29

About the Author

Rafael Santiago de Souza Netto is a Computer Scientist from Brazil.
His main areas of interest are Programming, Computer Networks,
Operating Systems, UNIX culture, Compilers, Cryptography, Information
Security, Social Coding. He has been working as Software Developer
since 2000. You can find him at GitHub (as rafael-santiago).

http://pacman128.github.io/pcasm/
http://pacman128.github.io/pcasm/
https://github.com/rafael-santiago/life
https://github.com/rafael-santiago/life

SECURITY

Introduction to Port-knocking

Changing the port numbers is not a proper security
policy. Changing the port numbers and services is a
common mistake. Hackers are going to find out what
you are hiding by just a simple port scanner which
takes about 2 minutes, nothing more. Nmap will take
care of this process, and it’s over.

Port-Knocking mitigates this type of security issues.
A Port-knocking server listens to all traffic on an

Ethernet (or PPP) interface, looking for special
"knock" sequences of port-hits. A client makes
these port-hits by sending a TCP (or UDP) packet to
a port on the server. This port need not be open
since knockd listens at the link-layer level, it sees all
traffic even if it's destined for a closed port. When
the server detects a specific sequence of port-hits, it
runs a command defined in its configuration file. This
can be used to open up holes in a firewall for quick
access. The complexity of the knock can be
anything from a simple ordered list (e.g., TCP port

30

FreeBSD
Port-Knocking
You will learn ...

• Introduction to Port-Knocking

• Installing a Port-Knocking Client/Server

• Configuring a Port-Knocking Server

• Port-Knocking

• Create Reverse-Shell

1000, TCP port 2000, UDP port 3000) to a complex
time-dependent, source-IP-based and
other-factor-based encrypted hash.

More Details

Port-knocking can be implemented in a number of
ways, such as:

• Daemon: With a simple daemon (service),
you can run your port-knocked server.

• Kernel-Module: Kernel-Module or device
driver is more complicated, but it’s more
stable.

In fact, Port-knocking has been used in many
hacking tools, like rootkits.

Installing Port-Knocking Client/Server

There is a flexible Port-knocking server and client.
You can easily install it by port tree or pkg:

cd /usr/ports/security/knock

make install clean rehash

Tip: issue the above commands on both the client
and the server.

This port consists of two app:

• knockd -- Port-knocking server

• knock -- Port-knocking client

Configuring Port-Knocking Server

To configure knockd service, you have to edit
knockd.conf. To facilitate that, we must first create a
conf file from a sample and then add configurations:

cp /usr/local/etc/knockd.conf.sample
/usr/local/etc/knockd.conf

ee /usr/local/etc/knockd.conf

Contents of knockd.conf:

[options]

 logfile = /var/log/knockd.log

 interface = re0

[openSSH]

 sequence = 7000,8000,9000

 seq_timeout = 5

 command = /sbin/ipfw -q add
00100 pass proto tcp src-ip %IP%
dst-port 22

 tcpflags = syn

[closeSSH]

 sequence = 9000,8000,7000

 seq_timeout = 5

 command = /sbin/ipfw -q
delete 00100 pass proto tcp src-ip %IP%
dst-port 22

 tcpflags = syn

As you can see, there are three sections and many
directives. An options section which is dedicated to
interface name and log file. The other two sections
are for executing the command by a custom
sequence of ports within five seconds that has a syn
flag.

The first command adds a rule number 00100 to
ipfw that allows connection to SSH port by IP
address of who knocked successfully.

The second command deletes the previous rule.
However, you can execute any command.

One of the most important directives is
One_Time_Sequences. You can add this directive
by:

One_Time_Sequences =
/path/to/one_time_sequences_file

The above referenced file contains the one-time
sequences to be used. Instead of using a fixed
sequence, knockd will read the sequence to be used
from that file. After each successful knock attempt,
this sequence will be disabled by writing a '#'
character at the first position of the line containing

31

the used sequence. That used sequence will then
be replaced by the next valid sequence from the file.

Also, TCPFlags directive can be these values:

TCPFlags = fin|syn|rst|psh|ack|urg

When using TCP flags, knockd will IGNORE TCP
packets that don't match the flags. This is different
from the normal behavior, where an incorrect packet
would invalidate the entire knock, forcing the client
to start over. Using "TCPFlags = syn" is useful if you
are testing over an SSH connection, as the SSH
traffic will usually interfere with (and thus invalidate)
the knock. Separate multiple flags with commas
(e.g., TCPFlags = syn, ack, urg). Flags can be
explicitly excluded by a "!" (e.g., TCPFlags =
syn,!ack).

On your serverm issue the following command to run
the port-knocking server:

knockd

Port-Knocking

On your client, issue this command:

knock “server ip” 7000 8000 9000

Replace “server ip” with your server’s IP.

There are other ways to do Port-Knocking:

 Nmap

The Nmap is a Network exploration tool and security
/ port scanner, but you issue this command to
initiate port-knocking:

for x in 7000 8000 9000; do nmap -Pn
--host_timeout 201 --max-retries 0 -p
$x “server ip”; done

Netcat

The nc (or netcat) utility is used for just about
anything under the sun involving TCP, UDP, or UNIX
domain sockets. It can open TCP connections, send
UDP packets, listen on arbitrary TCP and UDP ports,
do port scanning, and deal with both IPv4 and IPv6.

And it can do the same thing with:

nc -z “server ip” 7000 8000 9000

Pros and Cons

Everything has its advantages and disadvantages
and port-knocking is not an exception to this rule:

Pros

• Very low overhead

• Easy to deploy

• Compatible with any platform

• Useful directive

• Very hard to brute force

Cons

• Can be a single point of failure

• Vulnerable to man in the middle attack

• Sensitive to latency

Creating Reverse-Shell

Reverse shell is a type of connection that the server
starts to communicate with the client, and allows the
client to use its shell. As you can imagine, the server
has no open port to listen but you can connect to it.

All you do is to edit knockd.conf and replace that
command with this:

command = ssh -fN -R 9000:localhost:22
root@%IP%

This command binds client port 9000 to server port
22.

And then from client, issue this:

ssh root@localhost -p 9000

The client connects itself at port 9000, but because
ports are interconnected, the client is going to
connect to the server.

32

Considerations

Configure the server to do password-less ssh (public
key). Make sure that parameters such as
TCPKeepAlive, ClientAliveInterval,
ClientAliveCountMax and GatewayPorts are set to
appropriate values.

Conclusion

Port-knocking is not only about opening a port or
something like that. You can do whatever you want
like executing a special script or something like
reverse shell or, etc.

33

About the Author

Abdorrahman Homaei
has been working as a
software developer since
2000. He has used
FreeBSD for more than
ten years. He became
involved with the
meetBSD dot ir and
performed serious
trainings on FreeBSD. He started his company
(corebox) in February 2017.

Full CV: http://in4bsd.com

His company: http://corebox.ir

Useful Links

http://meetbsd.ir

http://in4bsd.com

http://in4bsd.com
http://in4bsd.com
http://corebox.ir
http://corebox.ir
http://meetbsd.ir
http://meetbsd.ir
http://in4bsd.com
http://in4bsd.com

MINIX

Accessing computer resources by a process
requires a methodology of how the process gains
access to them. For the past years, a lot of research
has been done on this question, but it is always
relevant to improve current models. It is possible to
analyze (with different metrics) how the operating
system deals with different schedule policies, as we
can see in the work of Kolivas [9, 10] and Guerrero et
al. [5].

The current literature [16] encompasses a wide
variety of mechanisms on scheduler developments,

discussing in greater detail different policies and
their modeling and implementation. One of the most
commonly used schedulers for desktop computers
is the famous Round Robin with Priorities, analyzed
by Guerrero et al. [5].

Although it is difficult to introduce large changes on
traditional schedulers, we can see in Swift's work
[16] that, by exploring some specific information
about the process's behavior, we can adjust, for
example, the priority and quantum in a more
dynamic way. A similar approach, although with

34

Design and Analysis of
Object-Oriented Feedback
Process Scheduler in User
Level
Some operating systems need modularity between their components as one of the main factors to
implement a microkernel that is both secure and fault tolerant. When we consider dealing with operating
system structures as objects, we see that it greatly helps to implement the desired modularity in these
systems.

The purpose of this work is to present an object-oriented design for a feedback process scheduler that runs
on user mode. We show the details of the original structured implementation, the new pro-posed design, and
show the adopted mechanism to interface the new scheduler and the other servers or even the kernel.

We also show a basic analysis of various execution times from CPU bound and I/O bound processes, using
well-known benchmarks from the literature for both schedulers: structured scheduler and object-oriented
scheduler.

Source Code: https://github.com/rhiguita/minixsched

https://github.com/rhiguita/minixsched
https://github.com/rhiguita/minixsched

methodological differences, can be seen in Teller
and Seelam [19].

Because Swift's work [16] motivated our research on
process's scheduler, we decided to use the same
operating system used by Swift, Minix [12], which is
an operating system that has a microkernel structure
and uses messages to communicate between
processes.

Considering the proposed process scheduling and
modularity of Minix’s microkernel layout, we think
that the best approach to deal with processes is to
implement them as objects. To start, we choose the
FeedBack Scheduler and propose an
Object-Oriented model with a small interface to
communicate each other and with the kernel.

Because execution time is also relevant, we will
compare the execution time from the original
Feedback Scheduler and the new Object-Oriented
version of the same scheduler.

The remaining sections of this article are organized
as follows: Related work; Scheduler explains the
original version of the Feedback Scheduler, and our
Object Oriented model; Experimental Study
evaluates our approach, comparing it with the
structured version; Results closes the article with our
final considerations.

RELATED WORK

Herder at al. [6] presents a study about fault
tolerance on microkernel based operating systems.
It is worth mentioning that this work also addresses
kernel servers that run in user level.

The process of moving the scheduler from kernel
level to user level is described in Swift[16], where it is
proposed the Feedback Scheduler.

On new approaches to processes scheduling on
interactive systems for personal computers, it is
relevant to mention Kolivas efforts to improve the
Linux scheduler [9, 10].

In [20] we can see how is it possible to change old
paradigms and design the whole operating system
using an Object-Oriented approach. Concerning
different ways to deal with scheduling, we have the
K42 scheduler [1] and also Juggle [7].

Guerrero et al. [5] compares different schedulers and
variants of using specific metrics (such as, execution
time, throughput, etc.).

In conclusion, the literature indicates the opportunity
to demonstrate that is possible to improve the
modularity, from the point of view of the source
code, of microkernel based operating systems by
treating their structures as objects.

SCHEDULER

The scheduler of an operating system is responsible
for the alternation of multiple applications running
concurrently. Ultimately, schedulers define the logic
used to choose which process the operating system
will execute at a given moment.

When we observe the operation of Minix’s scheduler,
since kernel version 3.1, an interesting fact can be
noticed: most of it is located in the user-mode.

Swift aim was to migrate all the possible scheduler
to user-mode, in order to make the system more
fault tolerant, and also simplifying the adoption of
multiple schedulers in the same operating system at
the same time[16].

During his studies and experiments, it was found
that a part of the scheduler still would need to be in
kernel mode. The main reason for this is the fact that
the first processes created, when the system is
being booted, needs an initial low-level management
capability; later on, it is possible to transfer such
capability to the user mode.

Another point worth mentioning is that Minix uses
messages to communicate between processes
(IPC), and a user-mode scheduler needs more
message exchanges to perform the same tasks with

35

However, microkernel based operating systems,
such as Minix, have particularities that need to be
considered in the process of scheduling tasks, for
example: (i) most of the daemons run in user
level; (ii) the impact, with respect to the execution
time, of Inter Process Communication (IPC) (i.e.:
how processes communicates) [2].

regard to the old kernel level scheduler (Minix’s
kernel version before 3.1). This means that more
time is spent on the communication between
user-level scheduler and the “small” kernel-level
scheduler.

Considering that the main goal of Minix isn’t the high
performance but high availability [6], migrating the
scheduler to user-level is a typical but valid in this
operating system model.

Feedback Process Scheduler

Proposed by Swift [6], the Feedback Scheduler
creates some metrics and uses them in scheduling
decisions. Thus, this scheduler promotes a more
accurate division of the hardware resources. The
former version used in this project uses the metrics
showed in [4].

Basically, the Feedback Scheduler uses messages of
type “limit quantum reached”, sent by Minix’s kernel,
and then, attaches metrics within these messages,
giving all this information to the scheduler in
user-mode.

IPC and the Scheduler

To understand how the process scheduler works on
Minix, we have to consider the way that servers and
kernel use to communicate. In Figure 1, we can
understand how the scheduler receives messages
from others servers and the kernel.

Figure 1. IPC between servers and kernel

In Figure 1, each arrow is tagged with a number that
identifies which type of messages they could send to
the scheduler. The Process Manager can send the

following messages (referred by number 1): START,
INHERIT, STOP, and NICE. The Reincarnation Server
can send just messages of type START (referred by
number 2). Finally, the KERNEL can send messages
of type NO QUANTUM (referred by number 3).

As we can see, we have four different kinds of
messages: START, STOP, NICE and NO QUANTUM.
The message called INHERIT is a particular case of
the START message. Therefore, we deal with this
message the same way we deal with the START
message (except for very specific details that are not
going to be discussed in the scope of this paper).

System Calls

Swift [6] proposed two system calls to enable the
communication between the user space process
scheduler and the small scheduler interface that
belongs to the kernel (Figure 2).

Figure 2. System calls of scheduler

The first system call is “sys_schedctl”, and it is used
by the scheduler to request the control over a
specific process.

The other system call is “sys_schedule”, and it is
used when the scheduler needs to send the basic
information that is used by the scheduler interface
(e.g., priority and quantum).

It is highly recommended to read [6] in order to
understand all the details involved during the
scheduler migration process from kernel space to
user space.

36

Structured Programming Version

To better understand how the original code of the
Feedback Scheduler is, a flow chart was done to
represent the flow between each function. In Figure
3 we can see how the “communication” between the
structured functions is.

The main function is an infinite loop that waits for
messages coming either from other processes or the
kernel. Further details about this can be found in
section IPC and the Scheduler.

When a message reaches the Scheduler, it has a
type that is mapped to one of the following
“message” functions (called “MF”): START/INHERIT,
STOP, NICE or NO QUANTUM. Then each one of
these MF can call other functions, some of them with
a unique use of an MF and, most of them, shared
use between the others MF.

For example, Figure 3 shows that the STOP
message type uses two functions: accept_message
and sched_isoemtyendpt, both shared with NICE
function. On the other hand, NO QUANTUM uses
two shared functions (sched_isokendpt and
schedule_process) and one with unique use
(burst_smooth).

Object Oriented Version

As mentioned before, considering that one of the
main goals of Minix and other microkernel operating
systems is to provide modularity, we decided to deal
with the process scheduling using the Object
Oriented model instead of the structured model.

For example, in the structured programming
approach, when the Scheduler receives a message
from a user program (e.g., “NICE”) through Process
Manager, it identifies the message and calls the
function associated with such type. This function
identifies the number of the process using the
“endpoint” and checks if it is a valid one on which
adjust the priority. After this, the user level scheduler
has to communicate with the kernel, using the
system call described before, to inform that the
priority of a specific process has to be changed
inside the kernel.

We think it is better to deal with this as a method
from a class despite the original approach shown in
section Structured Programming Version because
when we think about a modular system, it is difficult
to think of a process individually and then have a few
individual functions to deal with specific situations.

37

Figure 3. Flow between functions

We propose the following class (Figure 4) to deal
with every process on the system, having all the
originals variables as structures and all the
separated functions as method belonging to this
specific class.

Figure 4. Scheduler class

As we can see, considering the last example about
the “NICE” message, in this model it is much easier
and rational to deal with a process. By comparison
with the older model, now we have the original value
of the priority as an attribute (called priority), and
then we just call the method that adjusts this value
to a new one.

The Interface (Decoder)

To make things work with this new approach from
our scheduler, we implemented a small piece of
code to interface the new scheduler with the other
system’s components. We call this the “decoder”.

This “decoder” (Figure 5) is responsible for receiving
the messages from other parts of the system and,
considering the process that is going to be
“changed”, access a specific position of the vector
of objects from the class Scheduler.

Figure 5. Decoder

EXPERIMENTAL STUDY

In this section, we present all information about our
experiments to make them replicable [3].

First of all, we get the original code from Swift's
work [16], originally implemented on Minix 3.1,
ported by Ferreira and Lopes [4] to Minix 3.2.1 (the
present version of Minix when we started this work),
then we implemented all that was described before
using C++ language.

As mentioned, the scheduler of Minix runs on user
space, but his binary should be within the kernel
image file. Thus, we generate two different kernel
images, one with the original Feedback Scheduler,
and the other one with the new object-oriented
version of the same kind of scheduler.

To compile both versions of the scheduler, we used
clang 3.1, which is normally used to compile all the
source code from Minix. To change the scheduler
and perform the experiments, we had to reboot the
machine, to load the right version of the kernel
image.

Concerning the experiments, we followed the
approach showed in [14, 15], which uses the DOE
(Design of Experiments) method [13]. This method
requires changes on selected input factors to
observe different results as output. In our case, the
output or response variable is the execution time of
each selected program. The DOE is further detailed
in sections Design of Experiment. The experiments
were done on an Intel Atom N270 1.6GHz with 1GB
DDR2 SDRAM memory running Minix 3.2.1. All the
execution times of these experiments were
measured using the time program [8].

38

Design of Experiment Number 1

This first experiment aims to analyze the effect of the
level of compiler Optimization (O2 and O3 from GCC
4.4), and the Scheduler (structured or
object-oriented) over the execution time of the
well-known Linpack Benchmark for personal
computers [11]. Table 1 shows the input factors
corresponding to each signal from the matrix used
on the DOE method [13].

Table 1. Factors and levels of the first experiment

Factors Level (-) Level (+)
Scheduler SP OO
Optimization O2 O3

Design of Experiment Number 2

This second experiment aims to analyze the effect of
the use of two different I/O programs (cp and
bunzip2), and the Scheduler (structured or
object-oriented) over the execution time of copying a
file and decompressing, as suggested by Ferreira
and Lopes [4]. Table 2 shows the input factors
corresponding to each signal from the matrix used
on the DOE method.

Table 2. Factors and levels of the second experiment

Factors Level (-) Level (+)
Scheduler SP OO
Program cp bunzip2

RESULTS

In the following next graphics, that shows the results
of the experiments, the black color refers to the
original Feedback Scheduler, while the gray color
refers to object-oriented version.

We also decided to normalize the results using
execution time of the original Feedback Scheduler.
Therefore, it is possible to see that the black bar of
the graphics is always at 100%, and the gray one
will be made considering this normalized parameter.

Experiment #1

Figure 6 shows the results of the first experiment
(CPU bound). We observe that when we have the

same level of GCC compiler optimization (O2) of the
Linpack Benchmark, the object-oriented version
(OO) has the worst execution time (0.12%)
compared with the structured version (SP).

But when we changed the GCC compiler
optimization level to O3, it is possible to see that we
have the same execution time with the two different
schedulers (SP and OO).

Figure 6. Result of CPU bound test

Experiment #2

We divide the results of the second experiment (I/O
bound) in two bar charts (Figure 7 and Figure 8).
Figure 7 presents the results of the program cp,
where is possible to see that the execution time of
the object-oriented version (OO) is 5.12% slower
than the original one (SP).

Figure 7. Results of test with cp (IO bound)

In Figure 8 (results of the program bunzip2) we have
similar behavior, but now the execution time of the

39

object oriented scheduler (OO) is just 0.32% slower
than the original one (SP).

Figure 8. Results of test with bunzip2 (IO bound)

CONCLUSION

In this work, we presented two different things: (i) a
design of a scheduler using an Object-Oriented
Paradigm, implementing it in the C++ language. We
started by choosing the Feedback Scheduler, coded
using a structured language, in this case C. Both
versions (structured and object-oriented) of the same
scheduler were compiled using the clang native
compiler from Minix. We experimentally test (ii) how
these two different programming approaches affect
the execution time from two different types of
processes: CPU bound and I/O bound processes.
We followed the DOE method [13] and the approach
suggested in [14, 15] to do all the experiments.

Considering the design (I), as we can observe in
section SCHEDULER, it’s possible to deal with the
scheduler as a class and the processes being
scheduled as objects, improving thus the modularity
of an already modular system, such as microkernel
design of Minix.

Regarding the experiments (II), the CPU bound tests
showed that the object oriented design didn't affect
much the execution time from the selected
benchmark. When we adjusted the gcc compiler
optimization parameter to O3 (“strong” optimization)
to the Linpack Benchmark, we had exactly the same
execution time. The I/O bound tests showed that, for
some specific reason that we didn't discover yet, the
performance of the object oriented scheduler wasn’t

the same when we copied a file using the cp
program.

As future work, we suggest an object-oriented
design to these servers of Minix: Process
Management and Reincarnation. This will greatly
help performance (execution time) improvement,
allowing the removal of the decoder used in this
work.

ACKNOWLEDGMENTS

This work was partially supported by Federal
University of Para through PRODOUTOR 2015.

REFERENCES

Appavoo, J., Auslander, M., Silva, D., Edelsohn, D.,
Krieger, O., Ostrowski, M., Rosenburg, B.,
Wisniewski, R. W., and Xenidis J. 2002. Scheduling
in K42. Technical Report. IBM.

Barnes, F. R. M., and Ritson, C. G. 2009. Checking
Process-Oriented Operating System Behaviour using
CSP and Refinement. In Proceedings of the Fifth
Workshop on Programming Languages and
Operating Systems (Big Sky, MT, USA, October 11,
2009). PLOS '09. ACM, New York, NY, Article No. 1.
DOI= http://dx.doi.org/10.1145/1745438.1745440.

Feitelson, D. G.. 2015. From Repeatability to
Reproducibility and Corroboration. ACM SIGOPS
Operating Systems Review. 49, 1 (Jan. 2015), 03-11.
DOI= http://dx.doi.org/10.1145/2723872.2723875.

Ferreira, A. B., and Lopes, B. C. M. 2015. Análise de
Desempenho do Escalonador de Feedback em
Modo Usuário no Minix em um Beaglebone. In
Proceedings of the 33rd Brazilian Symposium on
Computer Networks and Distributed Systems
(Vitória, Brazil, May 18 - 22, 2015).

Guerrero, R., Leguizamon, L., and Gallard, R. 1993.
Implementation and Evaluation of Alternative
Process Schedulers in Minix. ACM SIGOPS
Operating Systems Review. 27, 1 (Jan. 1993),
79-100. DOI=
http://dx.doi.org/10.1145/160551.160558.

Herder, J. H., Bos, H., Gras, B., Homburg, P., and
Tanenbaum, A. S. 2006. Minix 3: A Higly Reliable Self

40

http://dx.doi.org/10.1145/1745438.1745440
http://dx.doi.org/10.1145/1745438.1745440
http://dx.doi.org/10.1145/2723872.2723875
http://dx.doi.org/10.1145/2723872.2723875
http://dx.doi.org/10.1145/160551.160558
http://dx.doi.org/10.1145/160551.160558

Repairing Operating System. ACM SIGOPS
Operating Systems Review. 40, 3 (July. 2006), 80-89.
DOI= http://dx.doi.org/10.1145/1151374.1151391.

Hofmeyr S., Colmenares J. A., Iancu C., and
Kubiatowicz J. 2011. Juglle: Proactive Load
Balancing on Multicore Computers. In Proceedings
of the 20th International Symposium on High
Performance Distributed Computing (San Jose, CA,
USA, June 08 - 11, 2011). HPDC '11. ACM, New
York, NY, 03-14. DOI=
http://dx.doi.org/10.1145/1996130.1996134.

Korrisk, N. 2014. Linux User’s Manual. Retrieved
March 2, 2015 from
http://man7.org/linux/man-pages/man1/time.1.html.

Kolivas, C. 2004. Staircase Scheduler 2.6.7.
Retrieved March 2, 2015 from
http://lwn.net/Articles/87244.

Kolivas, C. 2007. RSDL Completely Fair Starvation
Free Interactive CPU Scheduler. Retrieved March 5,
2015 from http://lwn.net/Articles/224654.

Linpack Benchmark. 1994. Linpack 100x100
Benchmark In C/C++ For PCs. Retrieved March 1,
2015 from http://
http://www.netlib.org/benchmark/linpack-pc.c.

Minix Group. 2014. Minix Official Website. Retrieved
March 10, 2015 from http://www.minix3.org.

Montgomery, D. C. 2000. Design and Analysis of
Experiments (3rd. ed.). John Wiley & Sons, New
York, NY.

Nogueira, P. E., Matias, R., and Vicente, E. 2014. An
Experimental Study on Execution Time Variation in
Computer Experiments. In Proceedings of the 29th
Annual ACM Symposium on Applied Computing
(Gyeongju, Korea, March 24 - 28, 2014). SAC '14.
ACM, New York, NY, 1529-1534. DOI=
http://dx.doi.org/10.1145/2554850.2555022.

Nogueira, P. E., and Matias, R. 2014. Estudo
Quantitativo da Variabilidade nos Tempos de
Execução de Experimentos Computacionais. In
Proceedings of the 4th Brazilian Symposium on
Computing Systems Engineering (Manaus, Brazil,
November 03 - 07, 2014).

Swift, B. P. 2010. User Mode Scheduling in MINIX3.
Individual Programming Assignment. Vrije University
of Amsterdam.

Tanenbaum, A. S., and Bos, H. 2014. Modern
Operating Systems (4th. ed.). Prentice Hall Press
Upper Saddle River, NJ, USA.

Tanenbaum, A. S., and Woodhull, A. S. 2006.
Operating Systems: Design and Implementation (3rd.
ed.). Prentice Hall Press Upper Saddle River, NJ,
USA.

Teller, P. J., and Seelam, S. R. 2006. Insights into
providing dynamic adaptation of operating system
polices. ACM SIGOPS Operating Systems Review.
40, 2 (April. 2006), 83-89. DOI=
http://dx.doi.org/10.1145/1131322.1131339.

Wisniewski, R. W., Silva, D., Auslander M., Krieger,
O., Ostrowski, M., and Rosenburg, B. 2008. K42:
Lessons for the OS Community. ACM SIGOPS
Operating Systems Review. 42, 1 (Jan. 2008), 05-12.
DOI= http://dx.doi.org/10.1145/1341312.1341316.

41

http://dx.doi.org/10.1145/1151374.1151391
http://dx.doi.org/10.1145/1151374.1151391
http://dx.doi.org/10.1145/1996130.1996134
http://dx.doi.org/10.1145/1996130.1996134
http://dx.doi.org/10.1145/2554850.2555022
http://dx.doi.org/10.1145/2554850.2555022
http://dx.doi.org/10.1145/1131322.1131339
http://dx.doi.org/10.1145/1131322.1131339
http://dx.doi.org/10.1145/1341312.1341316
http://dx.doi.org/10.1145/1341312.1341316

About the Authors

42

Alexandre Beletti Ferreira  
(Federal Institute of Sao Paulo - Brazil - higuita@ifsp.edu.br)

Phd. in Engineering by University of Sao Paulo (USP), teaches Operating
Systems, Computer Organization, Computer Networks and Software
Reverse Engineering since 2006.

He has published papers in the following areas: operating systems and
computational mechanics.

He worked as a software engineer in public and private companies for
almost seventeen years. You can find more information about him on
Linkedin and ResearchGate.

Victor Hugo Panisa Bezerra 
(PRODESP - Sao Paulo, Brazil - victor.panisa@gmail.com).  
Victor has obtained Bachelor in Technology in Systems Analysis by São
Paulo State Technological College.

He is technician in Computer Networks by National Service of Industrial
Learning, an open-source enthusiast and Python lover.

He has been working in the area of networking and infrastructure for 5 years,
and already served in multi-national companies like TIVIT and PRODESP.

Disclaimer

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

mailto:higuita@ifsp.edu.br
mailto:higuita@ifsp.edu.br
mailto:victor.panisa@gmail.com
mailto:victor.panisa@gmail.com

43

Developing Java EE
Applications on Cloud

What you will learn…

• How to use RAD to create Java EE applications.

• Connect RAD to a PureApplication.

• Create a Cloud application in RAD.

• Publish the cloud application onto PureApplication.

• Use the Virtual Application Builder in

PureApplication to build the Virtual Application

Pattern topology.

• Deploy the Virtual Application Pattern from RAD to

the private cloud.

What you should know…
• Database and JPA concepts.

• Basic Java EE knowledge.

• Basic concepts of cloud computing.

Free Reading
www.SDJournal.org

INTERVIEW

Interview
with Joshua
D. Drake
Can you tell our readers about yourself and your
role nowadays? 
I am Joshua D. Drake; I am the founder of Command
Prompt, Inc. and United States PostgreSQL.
Additionally, was the former Director of Software in
the Public Interest, and current Director of The
Postgres Foundation. I have been doing this
Open-Source thing since Linux SLS. I am an avid
outdoorsman, family man, and a Linux and Postgres
lover. I currently lead Command Prompt, Inc., the
oldest Postgres consultancy in North America. I am
also the Co-Chair of PGConf US, the leading
non-profit Postgres conference in the United States.

How you first got involved with programming? 
I worked at Powell's books in Oregon and they
needed a special order database. I picked up a book
on DBASE and the rest is as they say, "history".

What is your the most interesting programming
issue, and why? 
Complexity. As I have grown professionally, I have
also gotten less technical on the engineering side. I
have watched as many frameworks either:

A. Solve a problem already solved

B. Continue to increase in complexity without solving
an actual problem

I would love to see engineering projects start talking
more directly with operations and deployment staff
to increase the usability of the user interface to an
engineering project.

What tools do you use most often, and why? 
Outside of Postgres (which the reasons should be
obvious), Thunderbird. There are those that would
laugh at this, but it is my central point of all
communication. This communication may come
from Git, Redmine, Zabbix, a custom billing app, or
any other source. When I combine that with the
advanced filtering capabilities of Thunderbird, I
always know when I need to respond to something.
This could be peer review requests, pull requests, or
even a need to check in on a Postgres server due to
a slow query or high IOWAIT%.

Please tell us more about your current projects? 
On the community front, I am actively involved in
organizing PGConf US and leading the
@AmplifyPostgres projects. I find that building
people in technology is more fulfilling than building
technology nowadays. Both of these projects have

44

goals of advocating and educating people on
awesome technology.

What’s the best advice you can give to others? 
Avoid group think. It is the death of Liberty that
Open-Source provides.

Please tell us more about PGConf US.Why? What
for? For Whom? 
PGConf US is the largest PostgreSQL conference in
North America. The success of this project has
allowed us to launch PGConf Org which is an
international effort to support conferences around the
globe. The project exists as an exemplification of:

People, Postgres,and Data.

In short, PGConf US wants to build people so they
can use Postgres to wrangle all of their data. It is a
conference for anyone interested in Postgres, from
hobbyist to engineer to DBA to developer to regulator.
We want everyone to help us build this awesome
database.

Do you have any specific goals for the rest of this
year? 
To continue to grow Command Prompt, Inc.'s cloud
support offerings, and to make PGConf US the best
place for Postgres education and advocacy.

Do you have any untold thoughts that you want to
share with the programmers? 
Don't be afraid to stand up to leadership. Remember
that leaders are not bullies (leaders who bully are just
bullies, not leaders). Leaders listen, collaborate, and
are transparent in their leadership decisions.
Conversely, don't be afraid to follow. You aren't good
at everything; celebrate your talents, lead where it
makes sense, follow where it doesn't.

Would you like to add anything? 
Thank you for the opportunity and I hope to see all
your readers at one of our events!

Thank you

45

INTERVIEW

Interview with  
Steve Wong
Steve Wong is the director of product management at iXsystems. He is a senior level
professional with over 20 years of experience in the fields of data communications,
enterprise storage, networking, telecommunications, brand marketing, publishing,
e-commerce and consumer package goods. Prior to iXsystems, Wong worked at
SerialTek, Hitachi Data Systems, ClearSight Networks, Finisar, Anritsu and Mattel.  
He began his career in investment banking at Bear Stearns and then served as a
member of technical staff at AT&T Bell Laboratories. Wong holds a BA from New
York University and a MBA from the Kellogg Graduate School of Management,
Northwestern University.

Let's start from the beginning; please tell our readers about yourself and your current role? 
I am the director of storage product management at iXsystems, and I have been in this role since December
2016. I sometimes get asked what exactly does a product manager do and depending on who you ask, you
may get a slightly different answer. But in general, a product manager has an overall responsibility and
accountability for a product line or product lines. In my case, the TrueNAS, FreeNAS Mini, and the FreeNAS
Certified product lines are my team’s responsibilities.

A little bit about myself. Although I currently reside in San Jose, California, I was born in Hong Kong and grew
up in New York City. Additionally, I have lived in Evanston, Illinois and Boulder, Colorado. I started my career
as a software engineer before transitioning over to product management and marketing. For the past 15 years,
I have been focusing on data center technologies, particularly around enterprise networking and storage. I am
passionate about product management and marketing as they relate to technology products.

How did you first get involved with iXsystems? 
Interesting enough, I first learned of iXsystems about six or seven years ago when I was working at another
enterprise storage company. I was researching on open-source storage companies when I came across

46

FreeNAS. I became intrigued as I did not have that much needed experience or knowledge on open-source
ecosystems and the concept of communities. I even downloaded the FreeNAS software and installed it on one
of my unused computers at that time. Fast forward to last year when I noticed iXsystems was looking to hire a
product manager. I submitted my resume and after several of rounds of interviews, I received an offer to join
the company.

Lately, the iXsystems company celebrated the release of the TrueNAS X10. Can you tell us what are the
main innovations of the new TrueNAS if we compared to the previous generation? 
We launched the new 3rd generation TrueNAS X10 in June of this year. It is a cost-effective enterprise storage
solution that we are targeting at small and midsized businesses. Some of the main innovations include the
X10’s high-density – being able to provide up to 120TB in a 2U form-factor and 360TB in a 6U form-factor. At
the heart of each storage controller is a high-performance but power efficient Intel D class Xeon System on a
Chip (SOC) processor. High-speed error correcting DDR4 memory provides for high reliability. The X10 is fully
SAS3 compliant, operating at line-rates of 12Gb/s for the data connectivity to storage. Lastly, the interconnect
between two storage controllers is a high-speed PCI Express 3.0 x8 connection. All this adds up to a modern
and powerful enterprise storage system.

What are the main advantages of TrueNAS? 
TrueNAS is based on FreeNAS but is qualified and tuned for enterprise storage applications. TrueNAS is a
unified storage solution which supports the full range of block and file protocols. There are some powerful and
unique capabilities that TrueNAS has over other competing solutions. TrueNAS leverages a technology known
as TrueCache that delivers better read and write system performance through the use of system RAM and
SSDs. Furthermore, the file system is self-healing, providing protection for your data. It is due to this capability
that we often say the data you store on a TrueNAS today and even 10 years from now will not change. Like
some other enterprise solutions, TrueNAS has capacity optimization features such as in-line compression and
deduplication. But we offer intelligent compression. TrueNAS checks to see whether data would benefit from
compression beforehand. Additionally, TrueNAS offers unlimited snapshots for local data protection and
replication for remote data protection to round out its disaster recovery capabilities. There are also enclosure
management services which will let you know which disks have failed in the array so they can be quickly
replaced. TrueNAS is also VMware, Citrix and Veeam certified. Moreover, it is a fully supported product,
backed by 24/7 customer support from iXsystems’ technical support team. I could go on, but I think you get
the idea of the capabilities and advantages of the TrueNAS.

What is the current status of development? What’s next? 
We just released TrueNAS 11.0 which introduces support for the object-based Amazon simple storage service
(S3) API, allowing TrueNAS users the ability to build and deploy private clouds. Furthermore, customers also
benefit from significant performance enhancements with certain workloads. For example, testing indicates file
serving operations perform up to 25% faster with an up to 45% reduction in latency. The recently introduced
FreeNAS 11.0 also incorporates a new beta GUI and support for virtualization -- these capabilities will ultimately
make their way over to the TrueNAS platform. We have now turned our development efforts to future releases
which promise to provide even more feature enhancements and functionality. We have some pretty exciting
new things happening on some fronts later this year that I am unable to talk about quite yet. However, I promise
to provide an update in about a quarter.

What would you advise me if I want to install a NAS at home on my hardware? Which is a better option,
FreeNAS or TrueNAS, and why?  
Actually, to build a NAS at home using your hardware and iXsystems software, your choice is limited to
FreeNAS. That is because, TrueNAS is an appliance-based solution whereby iXsystems provides customers
with a fully qualified and tested solution. And unlike FreeNAS users, TrueNAS customers receive full customer
and technical support from iXsystems. They also have access to enterprise capabilities like high availability

47

(redundant storage controllers) and VMware integration. For folks that choose to build their NAS, they can
always download the latest FreeNAS software at www.freenas.org.

Can you tell us what BSD means for you? Is it something that is still growing and developing? 
The BSD Operating System (and FreeBSD in particular) is at the heart of what iXsystems uses for all its
open-source projects. BSD has evolved over the years, bringing with it enterprise-class features such as ZFS,
in a lightweight operating system that continues to have a reputation for speed, security, and stability. The BSD
user base and ecosystem also continue to expand in both size and reputation.

Do you think that building a community and supporting each other is important in this industry? 
Behind many open-source software projects is a vibrant community where members support one another and
the overall community. That is certainly true of FreeNAS, our open-source storage operating system. FreeNAS
owes much of its success to the community that helps make the project thrive. Members help with feature
development, testing, documentation, and even language translation. The software has been downloaded
more than 9 million times, making it the world’s number one storage operating system. We could not have
gotten to this milestone without the support and help of the entire FreeNAS community.

Do you have any specific goals for the rest of this year? 
One of the reasons we released the TrueNAS X10 was to grow our presence in a market segment that we had
not traditionally been in before, and we will continue to develop, nurture, and grow that market. Our goal has
always been to make sure we continue to listen to our customer base and continue to provide additional and
new capabilities that help them address and solve their business challenges and problems.

Do you have any untold thoughts that you want to share? 
When I was studying for my computer science degree in college, I remember taking every programming
language class that was offered thinking that I will never need to learn another one again throughout my career
as a developer. Obviously, that was wishful thinking on my part in more ways than one. And although I no
longer code or write programs, I believe some of the skills that I picked up when I was a developer have served
me well as a product manager. One example is my job as a product manager often requires me to manipulate
large quantities of text data to develop financial models or perform analysis. You may be surprised to learn
that for some of these tasks, I still sometimes use the vi editor to make what can be very complex changes. In
my case today, it is MSDOS vi.

Summing up, please tell our readers why TrueNAS and FreeNAS are so unique and what we, as users,
can achieve when we decide to use them? 
A small number of companies account for most of the world’s commercial storage arrays. Increasingly,
patenting and restrictive contracts are used to enhance the power and control of these companies over the
storage that runs the world’s businesses.

Today, iXsystems leads the industry in building innovative storage solutions for a global marketplace based on
the concept of open technologies.

Our stewardship of many leading open-source projects, our commitment to the open-source software
community, as well as our decades of hardware design experience and expertise, are the reasons why
thousands of companies, universities, and government organizations rely on our storage and what drives us as
we enter our third decade in business.

You can learn more about the company and us at www.ixsystems.com.

Thank you

48

http://www.freenas.org/
http://www.freenas.org/
http://www.freenas.org/
http://www.freenas.org/
http://www.ixsystems.com/
http://www.ixsystems.com/

49

Starting with Python
Programming Language
and the Use of
Docstrings

Sotaya Yakubu has been an active contributor to open source

projects, moderator of the Python, Python for Android Community

forum, Entrepreneur and working as a Software Engineer with a new

Software startup company funded by Exist. In the past he was

involved as software developer with several companies and

individuals such as GenapSys, Mediaprizma kft, Multimodal Speech

Processing research group of Saarland University etc.

For the past eight years, he is also involved in development of

mobile API’s and research in Artificial Intelligence mainly

towards developing intelligent agents (autonomous physical agents)

capable of unsupervised learning.

He writes about experiences, solutions to problems in the area of

Software Engineering and Linux systems.

In this article, I will be talking about Python as a general

purpose programming language which is designed for easy

integration, readability and best of all, the ease in expressing

concepts in a few lines of code. In addition, we will be doing a

lot of practice both on the basics of Python programming and

afterwards, take a look at docstring and dir() and how they can be

used to learn about Python API.

FREE READING ​• ​SDJOURNAL ​• ​WWW.SDJOURNAL.ORG

COLUMN

The social implications of technological advancement are often presented in positive terms, yet
our core working patterns have slightly changed since the agricultural age. With the increasing
expansion of automation, robotics and artificial intelligence into traditionally secure employment
sectors, what changes can we expect to see in a society where employment opportunities for
the unskilled, semi-skilled and the professional rapidly shrink?

One advantage of being long in the tooth is that you can watch history repeating itself with the benefit of
wisdom and hindsight. One of the most prominent memories I have of the 1960’s was the continual narrative
that technology and advancements in engineering would bring untold benefits to society. While this indeed is
very true in many ways and when looking back to the dull post-war years when society finally managed to
climb out of the pit of depression and austerity, the reality did not meet the almost religious fervor with which
politicians and social leaders beat this particular drum.

While the mood music was very positive, I was blessed in the early 70’s when my parents moved to one of the
first new towns developed in Scotland, East Kilbride. Established in 1949 by the 1947 Local Government
(Scotland) Act, in part to address the poverty and poor housing conditions in the slums of Glasgow, East
Kilbride was not only the blueprint for modernity from an architectural and design principle, but also from the
high-tech and scientific industries that were encouraged to migrate to the area. The major motivation for this
was not so much the demographic or that this gave employers a clean sheet upon which to build and expand,
but the hidden benefits of government subsidy. The importance of the latter carrot was very much
underestimated for within a few generations, by the time the caustic effects of recession, downsizing, cost
cutting, outsourcing and globalization swept over the town, some of the most prominent early adopters had
either gone bankrupt or migrated to different shores.

The promises of what would come from a society where electricity was too cheap to meter, and that we would
enter an era of more free time for the masses, once again rang hollow as the harsh realities of the employment
market hit home. I could see the writing on the wall, and I too departed for the bright lights of London and the
world. My peers, who had studied long and worked hard, were left devastated when the redundancy notices
were handed out. While the plaintive cry of retraining was uttered, in reality, there was a stark choice – get on
your bike and look for work outside the area, or go on the dole (national assistance). The bitter truth that
technology offered a secure future from an employment perspective was shattered for many over those years.

50

About the Author

Rob Somerville has been passionate about technology since his early teens. A keen advocate of open systems since
the mid-eighties, he has worked in many corporate sectors including finance, automotive, air- lines, government and
media in a variety of roles from technical support, system administrator, developer, systems integrator and IT
manager. He has moved on from CP/M and nixie tubes but keeps a soldering iron handy just in case.

This specter is now knocking at the door of the driver, the retailer, the government employee, the journalist, the
accountant, the teacher and the lawyer. Even the hallowed confines of IT are being hollowed out as we return to
centralized, automated cloud computing. Automation and efficiency ruthlessly march on, like they have done
since the beginning of the industrial revolution. The difference this time around is we do not have a plethora of
dark satanic mills nor cozy family farms or employers where the dispossessed can sell their intellect, muscle or
creativity. The funeral director, the pawnbroker and the prostitute seem to be careers that may have a future,
but even the latter, may be replaced by automated sex dolls with realistic flesh. The career pathway appears to
be, you need to know more and more about less and less until you know everything about nothing.

The 64 million dollar question is when is the tipping point going to be reached where the current model of full
time employment breaks down? Rationally, and without any bias or bigotry, the social changes that have taken
place since the Second World War have effectively doubled the number of employees available in the
marketplace (albeit with grudging acceptance from some) – that being the emancipation of the housewife and
mother. This alone, is not the problem. The economic reality is we have too many potential employees, and not
enough jobs. And when you flood a market with a commodity, the value goes down. Hence the pincer
movement on those that want to better themselves, or to put it another way, those that aspire to social mobility.

A friend of mine that I chatted to recently, who works for one of the most high-tech companies in the world,
totally out of the blue raised the point about a citizens wage. What I find so ironic about this is that Richard
Nixon was on the verge of making that dream a reality in 1969. 1,200 economists backed that plan, including
John Kenneth Galbraith. There are dangers of such an idea, and the worst, ethically, I can instantly imagine is
the inherent subsidy that any employer will embrace, leading to a reduction in wages. We have seen the same
mechanism at work in the UK with the introduction of a minimum wage in the UK, rather than being a safety
net, employers have used this as a standard, leveraging the weight of the law to extract more value from the
potential workforce. Salaries have reduced in real terms, yet employers expectations have increased when it
comes to qualifications and experience.

I like the idea though, with a few caveats. Firstly, any amount paid out to a family or individual must be pretty
much unconditional. Unless you break the law, big time, you can receive it. Secondly, it must be a realistic
amount dependent on where you live to have a reasonable quality of life. Otherwise, we end up with financial
pogroms. Thirdly, employers need to understand this is not a subsidy. It is a much more important revelation. It
is about relationship and value.

Technology confronts humanity with a bare faced fact. Do you, as an individual, prefer the comfortable space
where right and wrong are clearly delineated, or do you prefer some grey areas? Human advancement has
taken us into worlds where, paradoxically, we can potentially erase ourselves from our own planet. What is
coming down the turnpike will decide that. Economics is a very complex subject, the rioting less so.

References:

https://www.jacobinmag.com/2016/05/richard-nixon-ubi-basic-income-welfare

https://en.wikipedia.org/wiki/Speenhamland_system

51

https://www.jacobinmag.com/2016/05/richard-nixon-ubi-basic-income-welfare/
https://www.jacobinmag.com/2016/05/richard-nixon-ubi-basic-income-welfare/
https://en.wikipedia.org/wiki/Speenhamland_system
https://en.wikipedia.org/wiki/Speenhamland_system

52

53

