MAGAZINE

FOR NOVI.CE AND ADVANCED USERS

» R Y \
. o L
.w

CREATING AND ScALING YOUR APPLICATIONS
Using CoNTAINERPILOT PATrERN

FLUENTD FOR CENTRALIZING L@G e

MINIX 3: A PR©M|SING DIAMOND IN'T "E-)UGH

THE CREATOR OF M1NIX3 _ *‘p

> -~ ’
- “!".‘w“ ‘

INTRODUCING THE TRUENAS WNIFIED STORAGE X10

‘INTERVIEW WITH PROE ANDREW. TANENBAjA

IMPLEMENTING AN ENIGMA MACHINE £

SIMULATOR AS A-CHARACTER DEVICE |
VOL 11 NO 06
ISSUE 06/2017 (94)
ISSN 1898-9144

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

HOW IMPORTANT IS YOUR DATA?

Years of family photos. Your entire music
and movie collection. Office documents
you've put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

NOW IMAGINE LOSING IT ALL

Losing one bit - that's all it takes. One single bit, and
your file is gone.

The worst part? You won't know until you
absolutely need that file again.

THE SOLUTION

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

0¥systems

http://www.iXsystems.com/mini

Example of one-bit corruption

The Mini boasts these state-of-the-
art features:

+ 8-core 2.4GHz Intel® Atom™ processor

« Up to 16TB of storage capacity

+ 16GB of ECC memory (with the option to upgrade
to 32GB)

+ 2 x 1 Gigabit network controllers

« Remote management port (IPMI)

« Tool-less design; hot swappable drive trays

« FreeNAS installed and configured

Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS

CERTIFIED
STORAGE

With over six million downloads,
FreeNAS is undisputedly the most
popular storage operating system
in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the

parts, wait for everything to ship and arrive, vent at
customer service because it hasn't, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn't even compatible. Or...

MAKE IT EASY ON YOURSELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you're getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every FreeNAS server we ship is...

» Custom built and optimized for your use case

» Installed, configured, tested, and guaranteed to work out
of the box

» Supported by the Silicon Valley team that designed and
built it

» Backed by a 3 years parts and labor limited warranty

http://www.iXsystems.com/storage/freenas-certified-storage/

As one of the leaders in the storage industry, you
know that you're getting the best combination

of hardware designed for optimal performance

with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

FreeNAS 1U

+ Intel® Xeon® Processor E3-1200v2 Family

« Up to 16TB of storage capacity

« 16GB ECC memory (upgradable to 32GB)

+ 2x 10/100/1000 Gigabit Ethernet controllers
+ Redundant power supply

FreeNAS 2U
+ 2x Intel® Xeon® Processors E5-2600v2 Family
- Up to 48TB of storage capacity
« 32GB ECC memory (upgradable to 128GB)
+ 4 x 1GbE Network interface (Onboard) -
(Upgradable to 2 x 10 Gigabit Interface)
+ Redundant Power Supply

_(inteD

inside”
XEON’®

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

EDITOR'S
WORD

Dear Readers,

MAGAZINE

| hope this finds you well. When | started preparing this issue, it didn’t occur to me that we would collect so many
fantastic and unique articles written by great authors. The most amazing thing when you deal with such nice people,
who are always on time and always there ready to help is the joy and satisfaction felt from their hard work. | am proud of
them and happy that we can continually impart knowledge to you, our readers. | think that the joy of doing anything is
this feeling which is needed to create a good thing in your life, not only in your professional life, but also in your everyday
existence. | think that creates a special moment when you can offer a smile to other people and encourage them to see
the world around them in brighter colours.

And now, let’s look at what is featured in this month’s issue. | would recommend that you read all the articles. We hope
you find those which are most presently useful for you and can help you in your daily tasks. You will find more details in
the next page, the Table of Contents. However, | will quickly review them all. In June, we had great new events. The
TrueNAS X10 was released and Steve Wong wrote about it. We decided to publish a short article which presents new
features of the TrueNAS X 10. Also, it is worth mentioning that the FreeNAS 11.0 was released as well. We all enjoy
these new releases. Carlos Antonio Neira Bustos’s article presents a ContainerPilot. You will learn how to create and
scale your application using it. This time, Abdorrahman Homaei will show you how to build FreeBSD 12 for RaspberryPi
3 with Crochet. Rafael Santiago will focus on the source code related to the FreeBSD. He wants to introduce you to the
main aspects of device driver programming for FreeBSD by using more than a simple Hello World sample. Therefore, at
the end of the article you should be able to have a historic cryptographic device within their /dev. Tips on how to
produce a multi-platform code base for device drivers will also be presented. That is not all you will read in his article.
Moreover, the article on MINIX3 written by Jean-Baptiste Boric is a must read. When reading it, do not miss the
interview with Professor Andrew Tanenbaum, the creator of MINIX3. | enjoyed reading it. Andrey Ferriyan sent an article
on Fluentd For Centralizing Log. In his article, Andrey talks about how to manage diverse and disparate logson FreeBSD
servers. Also, | cannot forget about my dearest Rob Somerville who every month publishes a wonderful column. This
time, he will share his thoughts on: Amid the fever of “fake news” and multiple governments’ desire to limit encryption in
light of more terrorist atrocities, is the core principle of social media and the World Wide Web - that of freedom of
expression — coming to an end?

What can | say? | just can’t thank you enough. You make my day so much better every time you write to me. And | know
that many readers not only enjoy the read but also look forward to reading more of your articles.

| would also like to thank the BSD team members for reviewing and proofreading , and iXsystems for their constant
support and time to make this edition a success.

And now let’s read the articles.
Enjoy!

Best regards
Ewa & The BSD Team

In Brief 06
Ewa & The BSD Team

This column presents the latest news coverage of
breaking news, events, product releases, and trending
topics from the BSD sector.

TRUENAS

Introducing The TrueNAS Unified Storage X10.

Part 1 08
Steve Wong

It was just three years ago in August 2014, when
iXsystems introduced the TrueNAS Z series product line
of storage appliance platforms designed for
organizations needing Enterprise-Class storage systems.
TrueNAS is based on FreeNAS, the world’s #1
Open-Source software-defined storage operating
system. FreeNAS has the unique benefit of tens of
thousands of people around the world helping in QA and
providing extensive input into each successive release of
the software.

FREEBSD

Creating and Scaling Your Applications Using
ContainerPilot Pattern 10
Carlos Antonio Neira Bustos

Container Autopilot is a design pattern for applications
that are self-operating and self-managing. The containers
hosting the applications adapt themselves to the
changes in their environment and coordinate their actions
with other containers through a global shared state.
Carlos will teach you how to create and scale your
applications using it.

Build FreeBSD 12 For RaspberryPi 3 With Crochet 18
Abdorrahman Homaei

FreeBSD is one of the most stable OS of all time. It has
many bug fixes and new features for ARM SOC platform.
Some of these features include: CPU frequency and
voltage control, NAND device support, SMP support,
Stable SD cards detection, ARM AArch64 architecture
support, Initial ACPI support, 1-Wire devices support,
GPIO support, and many more. Also, you can’t find the
latest FreeBSD build for RaspberryPi3. Thus, you have to
do that single-handedly.

Implementing an Enigma Machine Simulator as a
Character Device 22
Rafael Santiago de Souza Netto

This article presents a “curious” Enigma machine
simulator implemented as a multiplatform character
device. Until now, this device driver can be built on
FreeBSD and also on Linux. The text will focus on the

TABLE OF CONTENTS

source code related to the FreeBSD. The aim of this
article is to introduce the reader to the main aspects of
device driver programming for FreeBSD using more than
a simple Hello World sample. Therefore at the end of the
article, the interested readers will be able to have a
historical cryptographic device within your/dev. Tips on
how to produce a multi-platform code base for device
drivers will also be presented.

Fluentd For Centralizing Logs 32
Andrey Ferriyan

In this article, Andrey will talk about how to manage
diverse and disparate logson FreeBSD servers. As
system administrators, when we want to know what
services are disabled or not running, we check our logs
in /var/log. The most useful commands we can use to
check if services are running in FreeBSD are “ps” and
“tail”.

MINIX3

MINIX3: A Promising Diamond in the Rough 42
Jean-Baptiste Boric

From its humble beginnings 30 years ago as a teaching
tool for Andrew Tanenbaum's Operating Systems: Design
and Implementation, MINIX has evolved a lot. Now in its
third edition and with a focus on reliability, the
raccoon-themed operating system is set to become a
serious and dependable UNIX-like contender. In his
article, Jean-Baptiste will tell you about MINIX3.

INTERVIEW

Interview with Professor Andrew Tanenbaum,

The Creator of MINIX3 46
Ewa & The BSD Team

When UNIX V6 was released, it became an instant hit at
the universities. A professor in Australia, John Lions,
wrote a book describing how it worked line by line. Many
universities began using Lion’s book in their courses.
When Bell Labs released UNIX V7, the new license
forbade teaching it in classes or writing books about it.
Therefore, | and many other professors were stuck. Read
the full interview to find out what Professor Andrew
Tanenbaum did.

COLUMN

Amid the fever of “fake news” and multiple
governments’ desire to limit encryption in light of
more terrorist atrocities, is the core principle of social
media and the World Wide Web - that of freedom of
expression - coming to an end? 48
Rob Somerville

https://www.ixsystems.com/truenas/
https://www.ixsystems.com/truenas/
http://www.freenas.org/
http://www.freenas.org/

IN BRIEF

iXsystems’ TrueNAS X10 Breaks New Ground With Entry Level
Enterprise-Class Unified Storage Solution

iXsystems, the industry leader in storage and servers driven by Open-Source, announced the release of the TrueNAS
X10. The TrueNAS X10 is a cost-effective enterprise storage solution that is designed to help small and midsized businesses
modernize their storage infrastructures. For years, customers have struggled with their storage infrastructures. They have
bought costly Enterprise-Class storages or do away with the idea of purchasing an enterprise-class storage due to its high
cost. Companies unable to invest in enterprise-class storage are often forced to use legacy SAN/NAS systems, deploy
consumer NAS systems, use direct access storage (DAS), or build their own software-defined storage (SDS) systems. The
TrueNAS X10 clears this barrier to entry by providing Enterprise-Class storage for SMBs and others that are challenging the
Dell™ EMC™ VNXe, Dell™ EMC™ Unity, HPE™ MSA 2040, and NetApp™ FAS2600 series of products with its functionality
and price point. The TrueNAS X10 comes in a dense 2U form factor accommodating up to 12 disk drives. It enables you to
reduce space, power and cooling costs and respond to the ever-changing business requirements. It is optimized for SMBs,
remote offices, and enterprises of all sizes. It lets you start small and grow to nearly 400 TB as your needs change. The
TrueNAS X10 can be ordered and will begin shipping in mid-July 2017. The standard lead time is three weeks for all TrueNAS
systems. However, pre-built 20 TB, 60 TB, and 100 TB configurations of the TrueNAS X10 are available with a one week lead
time.

Source: https://www.ixsystems.com/blog/truenas-x10/

FreeNAS 11.0 is Now Here

After several FreeNAS release candidates, FreeNAS 11.0 was released today. This version brings new virtualization and object
storage features to the World’s Most Popular Open-Source Storage Operating System. FreeNAS 11.0 adds bhyve virtual
machines to its popular SAN/NAS, jails, and plugins, letting you use host web-scale VMs on your FreeNAS box. It also gives
users S3-compatible object storage services, which turns your FreeNAS box into an S3-compatible server, letting you avoid
reliance on the cloud.

FreeNAS 11.0 is based on FreeBSD 11-STABLE, which adds the latest drivers and performance improvements. Users will
benefit from the overall systematic, architectural, and performance improvements. Testing indicates that the kernel of
FreeNAS 11.0 is 20% faster than the kernel of FreeNAS 9.10.

FreeNAS 11.0 also introduces the beta version of a new administration GUI. The new GUI is based on the popular Angular
framework and the FreeNAS team expects the GUI to be themeable and feature complete by 11.1. The new GUI follows the
same flow as the existing GUI, but looks better. For now, the FreeNAS team has released it in beta form to get input from the
FreeNAS community. The new GUI, as well as the classic GUI, are selectable from the login screen.

Also new in FreeNAS 11 is an Alert Service page which configures the system to send critical alerts from FreeNAS to other
applications and services such as Slack, PagerDuty, AWS, Hipchat, InfluxDB, Mattermost, OpsGenie, and VictorOps. FreeNAS
11.0 has an improved Services menu that adds the ability to manage which services and applications are started at boot.

To download FreeNAS and sign-up for the FreeNAS Newsletter, visit freenas.org/download.

Source: http://www.freenas.org/blog/freenas-11-0/

The Second BETA Build for the FreeBSD 11.1 Release

The second BETA build for the FreeBSD 11.1 release cycle is now available. ISO images for the amd64, armv6, i386, aarch64,
powerpc, powerpc64 and sparc64 architectures are available on most of our FreeBSD mirror sites.

Source: https://www.freebsd.org/news/newsflash.html

https://www.ixsystems.com/truenas/
https://www.ixsystems.com/truenas/
https://www.ixsystems.com/truenas_X10_datasheet_PDF/
https://www.ixsystems.com/truenas_X10_datasheet_PDF/
https://www.ixsystems.com/blog/truenas-x10/
https://www.ixsystems.com/blog/truenas-x10/
http://www.freenas.org/blog/freenas-11-0/
http://www.freenas.org/blog/freenas-11-0/
https://lists.freebsd.org/pipermail/freebsd-stable/2017-June/087277.html
https://lists.freebsd.org/pipermail/freebsd-stable/2017-June/087277.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html
https://www.freebsd.org/news/newsflash.html
https://www.freebsd.org/news/newsflash.html

DigitalOcean Releases Free Cloud Firewalls Service to Strengthen
Security for Large-Scale Applications

DigitalOcean, the cloud for developers, launched Cloud Firewalls, a free service that secures Droplets (cloud servers) by
reducing the surface area of a potential attack. Developers can deploy the service in seconds without installing or configuring
any software, and define what ports are visible on their Droplets to minimize risk. Along with DigitalOcean's free Monitoring
Service launched in April 2017, Cloud Firewalls are key parts of DigitalOcean's continuous effort to add value back to
developers by allowing them to deploy and scale applications of any size.

Developers with a large number of Droplets will find it much easier to secure their applications with Cloud Firewalls. It scales
automatically from one Droplet to thousands, and provides a central location for defining and applying access rules to prevent
unauthorized traffic from reaching them. Users can leverage tagging to a group and organize any number of Droplets, and use
them to define how each group of Droplets is secured.

Cloud Firewalls give users the ability to whitelist which ports are open and which IP ranges, tags, Droplets or load balancers
can access them. Users can easily configure the service and quickly through the dashboard or on the command line with
doctl. They can also leverage DigitalOcean's API to automate tasks and build integrations. Official client libraries are available
in Go and Ruby. Rules can be changed in one place and instantly applied to every Droplet that is tagged. The service is
available in every region to all Droplet customers at no additional cost.

Source: https://www.digitalocean.com/company/press/releases/digitalocean-releases-free-cloud-firewalls-service/

KomodoSec Offers Free Reports on Corporate Cyberattack Surface

Komodo Consulting, a leading cyber-security consulting company, recently launched its newest service from its research arm,
Peta.Al. Companies can receive free and customized reports that illustrate how individual organizations’ cyber-attack surfaces
appear to hackers. The corporate cyber-attack surface report reveals the client’s exposure to cyber threats based on several
indicators - geolocation, |IP addresses, open and sensitive ports, vulnerable apps, compromised hosts, and leaked accounts -
compiled from Peta.Al’s Open Internet, Deep Web and Dark Net research. Companies can visit
https://www.peta.ai/compare-yourself/ to request a copy of their report.

NetBSD 8.0 Release Process Underway

If you've been reading source-changes@, you likely noticed the recent creation of the netbsd-8 branch. If you haven't been
reading source-changes@, here's some news: the netbsd-8 branch has been created, signaling the beginning of the release
process for NetBSD 8.0.

We don't have a strict timeline for the 8.0 release, but things are looking pretty good at the moment, and we expect this
release to happen in a shorter amount of time than the last couple major releases did.

At this point, we would love for folks to test out netbsd-8 and let us know how it goes. A couple of major improvements since
7.0 are the addition of USB 3 support and an overhaul of the audio subsystem, including an in-kernel mixer. Feedback about
these areas is particularly desired.

To download the latest binaries built from the netbsd-8 branch, head to
http://daily-builds.NetBSD.org/pub/NetBSD-daily/netbsd-8/

Source: https://blog.netbsd.org/tnf/entry/netbsd 8 0 _release process

Phoronix Test Suite 7.2.0 Officially Released

Just days after celebrating nine years since the Phoronix Test Suite 1.0 release, Phoronix Test Suite 7.2-Trysil is now officially
available. Phoronix Test Suite 7.2.0 represents the latest quarterly feature update to our cross-platform, open-source
benchmarking software. Phoronix Test Suite 7.2 features a number of result parser improvements, various minor

enhancements to the pts_Graph subsystem, Phoromatic support for setting a run-priority on test schedules, new
sub-command helpers, improvements for running the Phoromatic client on macOS, improvements to the perf-per-dollar
module, Phodevi software/hardware detection improvements, and a variety of other improvements. Phoronix Test Suite 7.2 is
available via GitHub and Phoronix-Test-Suite.com.

https://www.digitalocean.com/company/press/releases/digitalocean-releases-free-cloud-firewalls-service/
https://www.digitalocean.com/company/press/releases/digitalocean-releases-free-cloud-firewalls-service/
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002838
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002838
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002839
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002839
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002839
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002839
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002840
http://comm100email19.com/Newsletter/Newsletter_Click.aspx?version=4&type=0&EmailId=5000616&EmailMessageId=5000616&UserOrContactId=49530&siteId=110732&LinkId=5002840
http://daily-builds.netbsd.org/pub/NetBSD-daily/netbsd-8/
http://daily-builds.netbsd.org/pub/NetBSD-daily/netbsd-8/
https://blog.netbsd.org/tnf/entry/netbsd_8_0_release_process
https://blog.netbsd.org/tnf/entry/netbsd_8_0_release_process
http://www.phoronix.com/scan.php?page=news_item&px=Phoronix-13-Birthday
http://www.phoronix.com/scan.php?page=news_item&px=Phoronix-13-Birthday
http://www.phoronix.com/scan.php?page=search&q=Phoronix%20Test%20Suite%207.2
http://www.phoronix.com/scan.php?page=search&q=Phoronix%20Test%20Suite%207.2
https://github.com/phoronix-test-suite/phoronix-test-suite/
https://github.com/phoronix-test-suite/phoronix-test-suite/
http://phoronix-test-suite.com/?k=downloads
http://phoronix-test-suite.com/?k=downloads
http://www.phoronix.com/scan.php?page=news_item&px=Phoronix-Test-Suite-7.2.0
http://www.phoronix.com/scan.php?page=news_item&px=Phoronix-Test-Suite-7.2.0

TRUENAS

Introducing The TrueNAS
Unified Storage X10. Part 1

Steve Wong, Director of Product Management

Steve Wong is the director of product management at iXsystems. He is a senior level professional with over
20 years of experience in the fields of data communications, enterprise storage, networking,
telecommunications, brand marketing, publishing, e-commerce and consumer package goods. Prior to
iXsystems, Wong worked at SerialTek, Hitachi Data Systems, ClearSight Networks, Finisar, Anritsu and
Mattel. He began his career in investment banking at Bear Stearns and then served as a member of technical
staff at AT&T Bell Laboratories. Wong holds a BA from New York University and a MBA from the Kellogg

Graduate School of Management, Northwestern University.

It was just three years ago in August 2014 when
iXsystems introduced the TrueNAS Z series product line
of storage appliance platforms designed for
organizations needing enterprise-class storage systems.
TrueNAS is based on FreeNAS, the world’s #1
Open-Source software-defined storage operating
system. FreeNAS has the unique benefit of tens of
thousands of people around the world helping in QA and
providing extensive input into each successive release of
the software.

TrueNAS provided a unified storage array packed with
enterprise-grade capabilities like VMware, Citrix, and
Veeam certifications, integration with public clouds,
capacity-efficient features like block-level inline
compression, deduplication, and thin provisioning as well
as other enterprise features like snapshots, replication,
and data at rest encryption.

Ever since the introduction of the TrueNAS Z products,
customers have asked us for an entry-class TrueNAS
appliance. I'd like to announce the arrival of the most
cost-effective storage available in the market, the
TrueNAS Unified Storage X10. It has a street price of
under $10,000 for 20TB of raw capacity, the capabilities
that exists across the entire TrueNAS product portfolio
are also in the TrueNAS X10. This is no TrueNAS “light”
product — rather it extends the TrueNAS product line.

Technical Overview

The TrueNAS X10 is available in a 2U, 12 x 3.5-inch SAS
form factor. It supports up to a maximum of 36
front-loading, hot-pluggable drives through the use of
two ES12 (12-bay) expansion shelves. Its maximum raw
capacity is 360TB and utilizes enterprise-class
dual-ported SAS3 drives. Furthermore, the TrueNAS X10
is a hybrid-class array, meaning that it combines RAM
and flash SSDs to provide performance acceleration in
the form of read and write cache extensions. All TrueNAS

https://www.ixsystems.com/truenas/
https://www.ixsystems.com/truenas/
http://www.freenas.org/
http://www.freenas.org/
http://bit.ly/2rRi4C0
http://bit.ly/2rRi4C0
https://www.ixsystems.com/truenas_X10_datasheet_PDF/
https://www.ixsystems.com/truenas_X10_datasheet_PDF/

arrays can make use of these cache extensions to
increase performance and reduce latency.

The TrueNAS X10 incorporates advanced components
which provide the building blocks for a modern
enterprise-class solution. Each storage controller is
anchored by a power-efficient Intel Xeon D-1531
processor running at 2.2Ghz. This advanced processor is
a high-performance systems-on-a-chip (SOC) with 6
cores and is built on top of a 14nm lithography
technology. The Thermal Design Power (TDP) value is only
45W, so it consumes less power than the lowest TrueNAS
Z product. An M.2 mSATA SSD device is used to boot the
storage operating system. The use of error correcting
2133MHz DDR4 ECC SODIMM modules reduces the
potential for in-memory data corruption.

The native PCI Express bus is PCI Express (PCle) Gen 3.0.
The storage server connects to storage through a LSI (12
Gb/s) integrated SAS3 controller and expander. The
TrueNAS X10 comes standard with dual-integrated LAN
GbE ports for data access. Customers can upgrade to
10GbE connectivity if more throughput is required through
a PCle x8 slot located in each controller. Electrical and
optical interfaces are both supported. Remote
management is provided by a dedicated GbE port through
a custom-built BMC module in each storage controller.

Like all products in the TrueNAS family, the TrueNAS X10
is available in a single-controller or a dual-controller
configuration. For customers requiring high availability
(HA), the dual-controller configuration is a requirement.
Customers with financial constraints may opt for the
single-controller version initially and then upgrade to a
dual-configuration at a later point when budget permits.

The TrueNAS X10 is smaller and greener than the original
entry storage array, the TrueNAS Z20. The TrueNAS X10’s
storage controller is 10.9” in length, 8.3” width, and 1.5”
(height). This is roughly the size of a ream of paper. Power
consumption is less than 40% of the Z20, yet the
TrueNAS X10 is one-third smaller than a Z20. It conforms
to the 80Plus Gold standard.

The TrueNAS X10 is a unified storage platform supporting

many file, block and object protocols including SMB, NFS,
iISCSI, AFP and WebDAV. Also supported is file syncing to
the Amazon S3 cloud.

Well, that is a quick rundown of the technical merits of the
new TrueNAS X10 from iXsystems. I’ll be back shortly with
part 2 of this blog to discuss the business value offered by
the TrueNAS X10, including use cases and applications.

BSD Certification

The BSD Certification Group Inc.
(BSDCG) is a non-profit organization
committed to creating and
maintaining a global certification
standard for system administration
on BSD based operating systems.

Q WHAT CERTIFICATIONS ARE AVAILABLE?

BSDA: Entry-level certification suited for candidates
with a general Unix background and at least six months of
experience with BSD systems.

BSDP: Advanced certification for senior system administrators
with at least three years of experience on BSD systems.
Successful BSDP candidates are able to demonstrate

strong to expert skills in BSD Unix system administration.

0 WHERE CAN | GET CERTIFIED?

We're pleased to announce that after 7 months of
negotiations and the work required to make the exam
available in a computer based format, that the BSDA
exam is now available at several hundred testing centers
around the world. Paper based BSDA exams cost $75 USD.
Computer based BSDA exams cost $150 USD. The price of
the BSDP exams are yet to be determined.

Payments are made through our registration website:
https://register.bsdcertification.org//register/payment

6 WHERE CAN | GET MORE INFORMATION?

More information and links to our mailing lists, LinkedIn
groups, and Facebook group are available at our website:
http://www.bsdcertification.org

Registration for upcoming exam events is available at our
registration website:
https://register.bsdcertification.org//register/get-a-bsdcg-id

FREEBSD

Creating and Scaling Your
Applications Using
ContainerPilot

What is ContainerPilot?

ContainerPilot is a micro-orchestrator that implements the
autopilot design pattern for applications that are both
self-operating and self-managed. The containers hosting
the applications adapt themselves to the changes in their
environment, and coordinate their actions with other
containers through global shared state. ContainerPilot
was created by Joyent, a company which specializes in
cloud computing. Joyent are the creators of the SmartOS,
an illumos distribution which was a long time ago
opensolaris. SmartOS uses zones which are now what
we called containers. Zones is a battle tested technology
that has been available for several years. It is now more
relevant than ever if you plan to use containers
https://www.joyent.com/smartos. Here is Joyent’s
definition:

“ContainerPilot is an application-centric
micro-orchestrator. It automates many of the operational
tasks related to configuring a container as you start it
re-configuring it as you scale it or other containers around
it, health-checking, and at other times during the
container's lifecycle. ContainerPilot is written in Go, and
runs inside the container with the main application.”

10

Deploying containerized applications poses a challenge
as the amount of ball juggling you will need to perform
grows exponentially with the number of containers you
need to deploy. In cases where you have dependencies in
your applications, containers need to know if they can
communicate with other containers that implement
functionality they need. For example, your container may
depend on another container that manages data
persistence, or it may simply need to pull data from a
service running in another container. If your containers
are not self-aware, you will need to do the orchestration
yourself which is not desirable.

Container autopilot uses docker for containerization, but
you could use Triton in Joyent's public cloud or install
Triton if you have the hardware and run your Triton
instance. But, what is Triton? Triton is a complete cloud
management solution for server and network
virtualization. You can create your own cloud using
containers. Triton is what powers Joyent's compute
service. Triton Compute Service provides three classes of
compute instances: Docker containers, infrastructure
containers, and hardware virtual machines. In our case,
we are only interested in Docker containers. In this article,
we will use docker-compose, but the example is ready to
start using Triton with Docker containers as well. For

https://www.joyent.com/smartos
https://www.joyent.com/smartos

more information to get acquainted with the docker, visit
https://docs.docker.com/engine/installation/. Now, let us
see how both container products are defined by their
creators. This is what the Docker homepage says:

“Docker is the world’s leading software container platform.

Developers use Docker to eliminate “works on my
machine” problems when collaborating on code with
co-workers. Operators use Docker to run and manage
apps side-by-side in isolated containers to get better
compute density. Enterprises use Docker to build agile
software delivery pipelines to ship new features faster,
more securely and with confidence for both Linux and
Windows Server apps.”

Joyent’s definition of Triton:

“So it gives me great pleasure to introduce Triton to the
world — a piece of (open-source!) engineering brought to
you by a cast of thousands, over the course of decades.
In a sentence (albeit a wordy one), Triton lets you run
secure Linux containers directly on bare metal via an
elastic Docker host that offers tightly integrated
software-defined networking. “

The Docker Engine client runs natively on Linux,
macOS, and Windows. Since 2015, you can also run
Docker in FreeBSD. For Triton, Joyent's implemented a
docker's remote API using Node.js, an asynchronous
event driven JavaScript runtime. However, why in the
Node.js instead of go ? It happens that Joyent is the
corporate steward of Node.js . Thus, Docker is available
in SmartOS, but it is spelled Triton (it is a very simple way
to say it, but a whole article is needed to do justice to
Triton) you need to follow this guide
https://docs.joyent.com/public-cloud/getting-started

Example project

For purposes of this article, we will use Docker and an
example repository which implements the container
autopilot pattern. To start working with this example
project, | will assume some basic command line
familiarity. Also, you will need a platform that runs
Docker. If you plan to use FreeBSD, installation
instructions can be found in wiki
https://wiki.freebsd.org/Docker . | will assume that you
know docker-compose notation. If you don't, click on the
following link for more information:
https://docs.docker.com/compose/gettingstarted/#step-3-
define-services-in-a-compose-file

11

The example project we are going to use to get
acquainted with the container autopilot pattern is called
“Node.js micro-services in Containers with Container
Pilot”. The author is called Wyatt Preul
(https://github.com/geek). | have an old version of that
repository at https://github.com/cneira/nodejs-example.qgit
which | will use in this article.

The main idea of this project is to create micro-services
that will produce and consume data that will be displayed
in a frontend web application. The orchestration between
these micro-services will be performed by Container
Autopilot.

Here is the architecture that makes up this project.

Let’s start analyzing this project on how it implements the
container autopilot pattern. First, let’s take a look at the
docker-compose.yml or the local-compose.yml. The only
difference is that local-compose.yml will spin containers in
your machine but the docker-compose.yml file will use
Triton and spin the containers in Joyent’s Cloud. If you
sign up, you will get $250 worth of compute/storage in
Joyent's public cloud so that you can get the feel for the
service, and test this “new” technology. Here is the URL.:
https://sso.joyent.com/signup.

https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://docs.joyent.com/public-cloud/getting-started
https://docs.joyent.com/public-cloud/getting-started
https://wiki.freebsd.org/Docker
https://wiki.freebsd.org/Docker
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://github.com/geek
https://github.com/geek
https://github.com/cneira/nodejs-example.git
https://github.com/cneira/nodejs-example.git
https://sso.joyent.com/signup
https://sso.joyent.com/signup

consul: _

image: INFLUXDB CONTINUOUS QUERIES LOG ENABLED=fals
autopilotpattern/consul:0.7.2-r0.8 e

restart: always traefik:

dns: image: dOcker/traefik:1.0.0
- 127.0.0.1 labels:

labels: - triton.cns.services=ui
- triton.cns.services=consul ports:

ports: "80:80"
- "8500:8500" - "8080:8080"

env _file: env_file:
- _env - _env

command: > restart: always
/usr/local/bin/containerpilot serializer:

nats: - INFLUXDB USER=root
image: - INFLUXDB PWD=rootl23
autopilotpattern/nats:0.9.6-r1.0.0 expose:
restart: always - "g8o"
env_file: restart: always
- _env frontend:
natsboard: image: dOcker/frontend:6.0.4
image: dOcker/natsboard env_file:
restart: always - _env
ports: expose:
- "3000:3000" - "go"
"3001:3001" restart: always
env_file: smartthings:
- _env image: dOcker/smartthings:8.0.0
prometheus: labels:
image: - triton.cns.services=smartthings
autopilotpattern/prometheus:1.3.0rl.0 ports:
mem limit: 128m "s0.80Q"
restart: always env file:
ports: - env
- "9090:9090" environment:
env_file: - FAKE MODE=true
- _env restart: always
influxdb: humidity:
image: image: dOcker/sensor:4.0.0

/bin/consul agent -server
-config-dir=/etc/consul
-log-level=err
-ui-dir /ui

autopilotpattern/influxdb:1.1.1

re

start: always

image: dOcker/serializer:6.2.0
env_file:
- env

environment:

env file:

- _env
env file: environment:
- _env - SENSOR_TYPE=humidity
environment: restart: always
- ADMIN USER=root motion:
- INFLUXDB_INIT_ PWD=rootl23 image: dOcker/sensor:4.0.0
- INFLUXDB ADMIN ENABLED=true env file:
- INFLUXDB REPORTING DISABLED=true _ env
- environment:
INFLUXDB DATA QUERY LOG ENABLED=false — SENSOR TYPE=motion
- INFLUXDB HTTP LOG ENABLED=false restart: always
temperature:

12

image: dOcker/sensor:4.0.0

env_file:
- _env
environment:
- SENSOR TYPE=temperature

restart: always

ContainerPilot needs to wrap your application so that it
can pass signals to it and receive its exit code. To do
that, you need to use ContainerPilot as a prefix
command or entry point. In the docker-compose.yml file,
we see the line that accomplished this. That means
Consul will be managed by ContainerPilot. Consul is a
tool for discovering and configuring services in your
infrastructure. It's used as a service registry where your
micro-services will advertise themselves and their health
status. For more info on consul, visit its project page:
https://www.consul.io/intro/index.html

command: >

/usr/local/bin/
containerpilot
/bin/consul agent -server

-config-dir=/etc/consul
-log-level=err

-ui-dir /ui

Your applications don’t need to be aware of
ContainerPilot. It adds to your application the following
features right away.

- Service discovery

. Lifecycle

- Health checks

. preStart, preStop, & postStop
- Signal handling

- Periodic tasks

- Telemetry

- Coprocesses

Configuration is specified in a file called
containerpilot. json. In there, you could define the
features you want to utilize for that container. Let’s check
a containerpilot.json for the sensor docker
image.

MAGAZINE

BSD

WWW. 65 c[mag.org

BSD

FOR NOVICE AND ADVANCED USERS

MAGAZINE

Creanng ano Scaung Your ApPucmo&s'
Using CoONTANERPILOT PATTERN

Buwo FaeeBSD 12 FoR 3 Wi Calbret

Fusento For CenrALaonG BOG
MINIX 3: A Prohsing DisionDd s THE ROUG

INTERVEW wWiTH PROE. ANDREW TANENGAUM
The Crearor oF MINIX3 'of

NTRODUCONG THE TrueNAS Uvep Stosace X10

w
Z
N
<
)
<
=

FOR NOVICE AND ADVANCED USERS

BuiLbing A PCI CoMPLIANT
INFRASTRUCTURE ON AWS

AWS INFrRASTRUCTURE Securny
Dese Dnve INto Access ContrOL MANAGENE
UNIX BLOG

INTERVIEW WiTH KaLn Stavkov ‘A
ELasmcon Buve

Password Crackmng N UNIX

Raspserry P1 3

https://www.consul.io/intro/index.html
https://www.consul.io/intro/index.html
http://www.bsdmag.org
http://www.bsdmag.org

"consul": "localhost:8500",
"services": |
{
"name": "{{.SENSOR TYPE}}",
"health": "/usr/bin/curl -o /

dev/null --fail -s http://127.0.0.1:
{{.PORT}}/check-it-out",
"poll": 3,
"ttl": 10,
"port": {{.PORT}}
}
1y
"coprocesses": [

{

"command": ["/usr/local/bin/

consul", "agent",
"-data-dir=/data",
"-config-dir=/
config",
"-log-level=err",
"-rejoin",
"-retry-join",
"{{ if .CONSUL HOST }}{{ .CONSUL HOST }}{{
else }}consul{{ end }}",
"io",

"-retry-interval",

"-retry-max",

"10s"],
"restarts": "unlimited"
}
1,
"backends": [
{
"name": "serializer",
"poll": 3,
"onChange": "pkill -SIGHUP
node"

Let’s describe sections of this containerpilot.json
config file.
“services”

- Name: This refers to the name of the service as it will
appear in Consul. Each instance of the service will
have a unique ID made up of the name+hostname of
the container.

 Port: it is the port the service will advertise to Consul.

- health is the executable (and its arguments) used to
check the health of a service.

14

« interfaces is an optional single or array of interface
specifications. If given, the IP of the service will be
obtained from the first interface specification that
matches. (Default value is ["eth0O:inet"]). The value that
ContainerPilot uses for the IP address of the interface
will be set as an environment variable with the
name CONTAINERPILOT_{SERVICE_NAME]} IP. See
the configuration template below.

+ poll is the time in seconds between polling for health
checks.

« ttl is the time-to-live of a successful health check. This
should be longer than the polling rate so that the polling
process and the TTL aren't racing; otherwise, Consul
will mark the service as unhealthy.

“coprocesses”. Coprocesses are processes that run
alongside the main application, in this case:

- command is the executable (and its arguments) that
will run when the coprocess executes.

+ name is a friendly name given to the coprocess for
logging purposes. This has no effect on the coprocess
execution. This value is optional, and defaults to
the command if not given.

« restarts is the number of times a coprocess will be
restarted if it exits. Supports any non-negative numeric
value (ex. 0, 1) or the strings "unlimited" or "never".
This value is optional and defaults to "never".

“backends”

name is the name of a backend service that this
container depends on, as it will appear in Consul.

« poll is the time in seconds between polling for changes.

« onChange is the executable (and its arguments) that is
called when there is a change in the list of IPs and
ports for this backend.

+ timeout is a value to wait before forcibly killing
the onChange handler. Handlers killed in this way are
terminated immediately (SIGKILL) without an
opportunity to clean up their state. The minimum
timeout is 1ms (see the golang ParseDuration docs for
this format). This field is optional and defaults to be
equal to the poll time.

But what about telemetry? This project adds telemetry to
the frontend container. The container image has the
following containerautopilot.json config.

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

"consul": "localhost:8500",
"services": [
{
"name": "frontend",
"port": {{.PORT}},
"health": "/usr/bin/curl -o /dev/null
check-it-out",
"poll": 3,
"ttl": 10
}
1y
"coprocesses": [
{
"command": ["/usr/local/bin/consul", "agent",

"-data-dir=/data",
"-config-dir=/config",
"-log-level=err",
"-rejoin",
"-retry-join", "{{ if .CONSUL HOST }}{{
consul{{ end }}",

"-retry-max", "10",
"-retry-interval", "10s"],
"restarts": "unlimited"

}

1,

"backends": [

{

"name": "serializer",
"poll": 3,
"onChange": "pkill -SIGHUP node"

}

1,
"telemetry": {

"port": 9090,
"tags": ["op"],
"sensors": [
{
"namespace'": "containerpilot",
"subsystem": "frontend",
"name": "free memory",
"help": "Frontend Free Memory",
"type": "counter",
"poll": 5,
"check": ["/bin/memory.sh"],
"timeout": "5s"
}

15

--fail -s http://localhost:{{.PORT}}/

.CONSUL HOST }}{{ else }}

- port is the port where the telemetry service will
advertise to the discovery service. (Default value is
9090.)

- interfaces is an optional single or array of interface
specifications. If given, the IP of the service will be
obtained from the first interface specification that
matches. (Default value is ["ethO:inet"])

- tags is an optional array of tags. If the discovery service
supports it (Consul does), the service will register itself
with these tags.

- sensors is an optional array of sensor configurations. If
no sensors are provided, then the telemetry endpoint
will still be exposed and will show only telemetry about
ContainerPilot internals.

The fields for a sensor are as follows:

+ namespace, subsystem, and name are what the
Prometheus client library will use to construct the name
for the telemetry. These three names are concatenated
with underscores _ to become the final name that is
recorded by Prometheus. In the above example, the
metric recorded would be
named my_namespace_my_subsystem_my_event_co
unt. You can leave off
the namespace and subsystem values and put
everything into the name field if desired; The option to
provide these other fields is simply for convenience of
those who might be generating ContainerPilot
configurations programmatically. Please, read
the Prometheus documents on the best practices to
name your telemetry.

help is the help text that will be associated with the
metric recorded by Prometheus. This is useful in
debugging since it gives a more verbose description.

type is the type of collector that Prometheus will use
(one of counter, gauge, histogram or summary).
See below for details.

poll is the time in seconds between running the check.

check is the executable (and its arguments) that is
called when it is time to perform a telemetry collection.

Using a sensor in telemetry is handy as you just create
shell scripts that expose metrics from your service. In this
case, this sensor will expose the free memory available in
that container.

16

#!/bin/ash

check free memory

echo "checked free memory sensor" 1>&2
free | awk -F' +' '/Mem/{print $3}'

So, let’s check the actual project and start spinning
containers. To get the project running, you need to follow
these steps:

$ git clone
https://github.com/cneira/nodejs-example.qg
it

$ sudo docker-compose -f local-compose.yml
up -d

Containers images will start building. After they are all up,
you will get access to the following:

http://localhost: 10001 Here, you will see charts for the
sensors, this is the actual application.

http://localhost:8500 Here, you will have access to
consul and you’ll be able to check the health and which
services have registered themselves in the catalog.

= 1

http://prometheus.io/docs/practices/naming/
http://prometheus.io/docs/practices/naming/
https://www.joyent.com/containerpilot/docs/telemetry#Collector_types
https://www.joyent.com/containerpilot/docs/telemetry#Collector_types
http://localhost:10001/
http://localhost:10001/
http://localhost:8500/
http://localhost:8500/

http://localhost:9090 Here, you will see Prometheus graph
all the metrics exposed by your services.

_—
=3

Want to scale?
https://docs.docker.com/compose/reference/scale/

S sudo docker-compose scale serializerl=3

This will spin up to three instances of the serializer1
container. All of which will be managed by
containerautopilot and will register themselves in the
consul’s catalog.

Conclusions

ContainerPilot saves you a great deal of effort when
dealing with containers. It gives you out of the box
telemetry, service discovery, etc. so that you don’t need to
code these services yourself. In this example, Node.js is
used, but ContainerPilot could be used with any service
coded in any language. Imagine leveraging ContainerPilot
to add observability, telemetry, and auto-restart features
to some legacy apps; that is a big win. This is just an
introduction to the ContainerPilot. In another article, Ill
create an application in C++ that leverages the
ContainerPilot goodies and deploys them using Triton.

17

References:

https://www.docker.com/what-docker

https://wiki.freebsd.org/Docker

https://apidocs.joyent.com/docker/divergence

https://qithub.com/autopilotpattern/nodejs-example

https://www.joyent.com/blog/triton-docker-and-the-best-of

-all-worlds

https://www.joyent.com/containerpilot

http://autopilotpattern.io/

https://www.youtube.com/watch?v=lwnUUJJw7UU

https://docs.docker.com/compose/gettingstarted/#step-3-

define-services-in-a-compose-file

https://www.joyent.com/blog/running-node-js-in-container

s-with-containerpilot

https://www.joyent.com/triton/compute

https://docs.joyent.com/private-cloud

About the Author

Carlos Antonio Neira Bustos has worked
several years as a C/C++ developer and
kernel porting and debugging enterprise
legacy applications. He is currently employed
as a C developer under Z/OS, debugging
and troubleshooting legacy applications for a
global financial company. Also he is engaged
in independent research on affective
computing . In his free time he contributes to
the PC-BSD project and enjoys metal
detecting.

http://localhost:9090/
http://localhost:9090/
https://docs.docker.com/compose/reference/scale/
https://docs.docker.com/compose/reference/scale/
https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://wiki.freebsd.org/Docker
https://wiki.freebsd.org/Docker
https://apidocs.joyent.com/docker/divergence
https://apidocs.joyent.com/docker/divergence
https://github.com/autopilotpattern/nodejs-example
https://github.com/autopilotpattern/nodejs-example
https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
https://www.joyent.com/blog/triton-docker-and-the-best-of-all-worlds
https://www.joyent.com/containerpilot
https://www.joyent.com/containerpilot
https://www.youtube.com/watch?v=IwnUUJJw7UU
https://www.youtube.com/watch?v=IwnUUJJw7UU
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://docs.docker.com/compose/gettingstarted/#step-3-define-services-in-a-compose-file
https://www.joyent.com/blog/running-node-js-in-containers-with-containerpilot
https://www.joyent.com/blog/running-node-js-in-containers-with-containerpilot
https://www.joyent.com/blog/running-node-js-in-containers-with-containerpilot
https://www.joyent.com/blog/running-node-js-in-containers-with-containerpilot
https://www.joyent.com/triton/compute
https://www.joyent.com/triton/compute

FREEBSD

Build FreeBSD 12 For
RaspberryPi 3 With Crochet

Why FreeBSD ?

FreeBSD is one of the most stable OS of all time.
Moreover, it has many bug fixes and new features for
ARM SOC platform. The following are some of these
features:

- CPU frequency and voltage control
« NAND device support

« SMP support

- Stable SD cards detection

« ARM AArch64 architecture support
« Initial ACPI support

« 1-Wire devices support

« GPIO support

- and many more.

Also, you can find the latest FreeBSD build for
RaspberryPi 3 and you have to do that single-handedly.

What Is RaspberryPi 3
and Why RaspberryPi 3?

The Raspberry Pi 3 is the third generation of Raspberry
Pi SOC after having replaced the Raspberry Pi 2 Model B
in February 2016.

A single-board computer (SBC) is a complete computer
built on a single circuit board, with microprocessor(s),
memory, input/output (I/O) and other features required of
a functional computer. Single-board computers were
made for demonstration or development systems, for

18

educational systems, or for use as embedded computer
controllers. Many types of home computers or portable
computers integrate all their functions onto a single
printed circuit board.

Compared to the Raspberry Pi 2, it has:

+ A 1.2GHz 64-bit quad-core ARMv8 CPU
+ 802.11n Wireless LAN

« Bluetooth 4.1

+ Bluetooth Low Energy (BLE)

Like the Pi 2, it also has:

1GB RAM

4 USB ports

+ 40 GPIO pins
« Full HDMI port

+ Ethernet port

« Combined 3.5mm audio jack and composite video
« Camera interface (CSI)

- Display interface (DSI)

. 'E)"d‘éhq pSuEéﬁ:)ard slot (now push-pull rather than

+ VideoCore IV 3D graphics core

We choose RaspberryPi 3 because of a better CPU clock
and Wi-Fi support.

What Is Crochet?

Crochet is a tool for building bootable FreeBSD images.
This tool was formerly known as "freebsd-beaglebone"
or "beaglebsd" since the original work was done for

BeagleBone. But it now supports more boards and
should easily extend to support much more.

How To Build FreeBSD 12 For
RaspberryPi 37

You need to get FreeBSD Source-Tree. Thereafter,
compile the source and write it on the SD card. So, let us
do it step by step:

« You need to get the latest Source-Tree with
subversion:

#pkg install subversion
#svn co
https://svn0.us-west.freebsd.org/base/head

/usr/src

Subversion is a version control system which allows you
to keep old versions of files and directories (usually
source code), keep a log of who, when, and why
changes occurred, etc., like CVS, RCS or SCCS.
Subversion keeps a single copy of the master sources.
This copy is called the source repository, it contains all
the information to permit extracting previous versions of
those files at any time.

If something goes wrong and you must do it again, first,
issue this command:

#svn cleanup /usr/src/
« Now, it’s time to get Crochet to build our image:

#pkg install git-2.13.0

#git clone
https://github.com/freebsd/crochet.git

- Select which board you want to build for:

#cd crocket
#fcp config.sh.sample config.sh.rpi3
#ee config.sh.rpi3

- uncomment this line (38) and exit:
board setup RaspberryPi3
+ Build the image:

#pkg install u-boot-rpi3-2017.01

19

» Cross-build U-Boot loader for RPi3

Das U-Boot (subtitled "the Universal Boot Loader" and
often shortened to U-Boot) is an open-source, primary
boot loader used in embedded devices to package the
instructions needed to boot the device's operating
system kernel. It is available for a number of computer
architectures, including 68k, ARM, AVR32, Blackfin,
MicroBlaze, MIPS, Nios, SuperH, PPC, RISC-V and x86.

U-boot-rpi3 is a Cross-build U-Boot loader for Rpi3.

#./crochet.sh -c config.sh.rpi3

Build process depends on your CPU speed but in
general, it demands a lot of time.

How To Install FreeBSD 12 On RaspberryPi 3?

All you need is a 2GB MicroSD and a MicroSD reader.
Let’s suppose that after you connect your MicroSD to
your PC, FreeBSD named it da0 then:

#cd crochet/work/

#dd
if=FreeBSD-aarch64-12.0-GENERIC-319760.1img
of=/dev/dal0 bs=1m conv=sync

The name of your “.img” build revision can be different.

How To Access To RaspberryPi Console?

There are three ways to do that:

+ HDMI cable and Keyboard
+ SSH
+ Console Cable

Access to RaspberryPi with Console Cable is more
technical and Geek-Style. Thus, | chose to cover it.
These days, most microcontrollers have a built in UARTs
(universally asynchronous receiver/transmitter) that can
be used to receive and transmit data serially. UARTs
transmit one bit at a time at a specified data rate (i.e.
9600bps, 115200bps, etc.). This method of serial
communication is sometimes referred to as TTL serial
(transistor-transistor logic). Serial communication at a
TTL level will always remain between the limits of OV and
Vcce, which is often 5V or 3.3V. A logic high ('1') is
represented by Vcc while a logic low (‘0') is OV.

https://github.com/freebsd/crochet.git
https://github.com/freebsd/crochet.git

that you must have a login on the machine (or equivalent)
to which you wish to connect.

#cu -1 /dev/ttyU0 -s 115200
-1 Specifies the line to use

-s Sets the speed of the connection. The
default is 9600.

Hit enter and you will be required to login.

user: root

Password is not required.

As you can see, command prompt shows us “rpi3”. You
Connect RaspberryPi 3 power supply and USB cable. can issue “uname -a” to see more details about arch
Plug TTL Serial cable like below pictures: and FreeBSD version.

Conclusions

Although the build process is time consuming, FreeBSD
12 is fully supported on RaspberryPi 3.

Useful Links

http://meetbsd.ir
http://in4dbsd.com

About the Author

Abdorrahman Homaei
has been working as a
software developer since
2000. He has used
FreeBSD for more than
ten years. He became
involved with the
meetBSD dot ir and
performed serious
training on FreeBSD. He
is starting his own
company in Feb 2017.

Access to RaspberryPi with CU command.
You can visit his website

The CU utility establishes a full-duplex connection to to view his CV:
another machine, giving the appearance of being logged http://in4bsd.com
in directly on the remote CPU. It goes without saying

20

http://meetbsd.ir
http://meetbsd.ir
http://in4bsd.com
http://in4bsd.com
http://in4bsd.com/
http://in4bsd.com/

ded ""l‘g i ol ! =)l o e W,
) ’ 3 2 1 W: \ '-" Q‘. 2
v BOSEN-C)) ’q| gy
“ b 529 | F ot -
3 : * i *= S
i : : I) !
laf AR =< . =
p = Dol &S ()
- ' — = | __?1:_ : ___.%_ | -
v : ! N A '
5 { ®
= B Gy Theaas R0, i
- '---."-~_ '-,. % .- .S .'.
T ¥ ': - % 4 .
i : s . .
'.4 i . e <« 8¢ *
ey 1% -
3 ’

bl
g e .
: :
L e
et

g N

MODERN.

"1 sl

INTRODUCING THE TRUENAS® X10, THE MOST COST-EFFECTIVE ENTERPRISE
STORAGE ARRAY ON THE MARKET.

Perfectly suited for core-edge configurations and enterprise workloads such as backups,
replication, and file sharing.

Modern: Not based on 5-10 year old technology (yes that means you legacy storage vendors)
Unified: Simultaneous SAN/NAS protocols that support multiple block and file workloads
Dense: Up to 120 TB in 2U and 360 TB in 6U

Safe: High Availability option ensures business continuity and avoids downtime

Reliable: Uses OpenZFS to keep data safe

Trusted: Based on FreeNAS, the world’s #1 Open Source SDS

* % % % *» » *»

Enterprise: 20TB of enterprise-class storage including unlimited instant snapshots and advanced
storage optimization for under $10,000

The new TrueNAS X10 marks the birth of a new entry class of enterprise storage. Get the full
details at iXsystems.com/TrueNAS.

™
Copyright © 2017 iXsystems. TrueNAS is a registered trademark of iXsystems, Inc. All rights reserved. . S g S t e I I | S

FREEBSD

Implementing an Enigma Machine
Simulator as a Character Device

This article presents a “curious” Enigma machine
simulator implemented as a multi-platform character
device. Until now, this device driver can be built on
FreeBSD and also on Linux. The text will focus on the
source code related to the FreeBSD. The aim of this
article is to introduce the reader to the main aspects of
device driver programming for FreeBSD using more than
a simple Hello World sample. Therefore at the end of the
article, the interested readers will be able to have a
historical cryptographic device within their /dev. Tips on
how to produce a multi-platform code base for device
drivers will also be presented. For the sake of brevity,
many details about Enigma machine were omitted. Due
to the same reason, the text does not cover
intermediate-level C programming.

What is the Enigma Machine?

The Enigma was an electro-mechanical cipher machine
created by Arthur Scherbius and it was used by the
German army during the World War Il. The cipher
implemented on this machine was first cracked by the
Polish mathematician, Marian Rejewski. After some
improvements, the produced cipher by the Enigma was
strengthened, and this new Enigma version was cracked
by the English mathematician, Alan Turing. He used the
famous “Bombes” and his breakthrough ideas about
Universal Machines. It is common to see the term “Turing
Bombe”, but the term “Bombe” was first used by
Rejewski during his “hacks” against the first Enigma
version.

Nowadays it is even being considered an outdated
cipher. Although it is not used anymore for secret
communications, the Enigma uses concepts widely
applied on modern ciphers.

For the sake of brevity, deeper details about how Enigma
encrypts data will be avoided. But in the next section, a
quick description about the machine internals will be
provided.

How does the Enigma machine work?

The Enigma is categorized as a rotor machine. In
cryptography, rotor machines are devices composed of
electrical and/or mechanical parts that encrypt an input.
Commonly, these machines can produce different codes
for the same input, producing what is called
Polyalphabetic ciphers.

The Enigma has four main parts: “rotors”, “rings”,
“plugboard” and “reflectors”. Each of them responsible
for increasing in some way the final security of the cipher.
The machine looks like a typewriter, but instead of paper,
there is a panel of light bulbs that depending on the
input, it turns on a specific light bulb representing a letter.
Once encrypted, all that the operator should do is to
write down the output. During the WWII, the encrypted
messages were sent using Morse codes.

Roughly, the motion of the rotors can be understood as
an odometer. There are three rotors and they can be
arranged in any position. They are chosen from a set of
eight rotors. Each rotor can have its initial position
configured from A to Z. Still, these rotors can have their
internal wiring shifted. In this way, the outputs will be
influenced. It is possible to shift each rotor to twenty-six
different positions.

The plugboard swaps a letter pair. Ten letters can be
swapped with the plugboard. When two letters are
swapped, one is assumed as another (internally in the
keyboard). As a result, the output also changes.

The reflectors are statical wirings and can be chosen
from a set of two. They send back the electrical signal
and can change the signal’s path thus influencing the
output. As you can see, the Enigma is a combination of
smaller components that alone, cannot provide much
security. However, when combined, they can make it less
susceptible to a brute force attack. Remember that all of
it was used in the past when there were no
supercomputers. Truly, computers were built to crack this
cipher and others, but not using brute force.

The idea of making it less prone to a brute force attack is
still applied today. This is the security goal on the
modern ciphers. Like Enigma, these modern ciphers are
composites of small transformations that alone, cannot
provide much security. Unlike Enigma, the modern
ciphers operate in bit-level instead of letters. The Enigma
is considered a reciprocal cipher. Reciprocal ciphers do
not have a separated inverse function to decrypt the
data. The function applied on encryption is the same
applied on decryption. Once the machine is configured, if
the encrypted message is typed, it will reveal the original
message also known as plaintext. It can be understood
as an ancient additive stream cipher. Modern stream
ciphers like RC4 and SEAL, for example, use a single
XOR operation when encrypting a byte. Furthermore, the
XOR is considered a reciprocal operation. Also, modern
block ciphers in OFB operation mode are reciprocal.
However, there are more ancient ciphers that implement
this reciprocal property. The Albam, Atbah and Atbash
present in Torah are reciprocal. Also, a cipher presented
in Kama Sutra, called Mlecchita vikalpa and so on.

If you want more details about the Enigma, take a look at
http://www.codesandciphers.org.uk/enigma/ among
other sites, the internet is full of information about it. If
you want to know the Math related to the brute force
attack against Enigma, you can follow it at
https://github.com/rafael-santiago/dev-enigma/blob/mas
ter/etc/brute-force.md. A bunch of movies about this
machine was produced; the last one was "The Imitation
Game" (2014). Maybe nowadays the Enigma could be
considered a “popular’” machine, contrary to the early
days when it was classified. Now is time to talk about
Programming!

From an electro-mechanical device to
a logical device
With the reciprocal behavior, the Enigma cipher makes it

easy to read and write operations if you start thinking of
it as a device driver.

23

In general, a device driver can be understood as the
logical part of a real world device, also known as
hardware. By the way, logical is also known as software.
If this special Software has its hardware implementation,
you can think of it as an interpreter between the
hardware and the Operating System (OS).

Also, it is possible to find device drivers purely
implemented as software. In this case, sometimes it can
act (emulate) like a physical device.

A device driver can ‘talk’ directly with the Operating
System. Therefore, it acts as a bridge between the User
and Kernel Space.

Many device drivers are deployed “from factory” into the
kernel. | meant statically compiled. Opposing the “static”
paradigm, many modern Operating Systems offer a way
to integrate, on-the-fly, new kernel features with the
Loadable Kernel Modules technique (LKMs). FreeBSD,
Linux, Windows, OSX are some examples of Operating
Systems with some LKM support. OpenBSD is an
example of OS that does not provide a LKM
implementation. In FreeBSD, the LKM is called KLD.

The nice part about LKMs is that you avoid a kernel
recompilation when a new feature needs to be added to
the OS. The result is a more modular kernel
implementation. The nasty part is to add new random
bugs (sometimes not tracked by the official Kernel Team
Development) instead of new features. If you are writing
some kernel code which you deem important, be sure
about the correctness of your code since in this kind of
environment, a segmentation fault leads to a kernel
panic, in most cases.

Moreover, you can roughly assume the LKM as a
dynamic library loaded by the kernel’s “Id”.

In UNIX, there are two main types of devices: character
devices and block devices. Character devices are stream
based and provide direct access to the device. On the
other hand, Block devices provides buffered access to
the hardware. On a character device, you can either read
or write byte-by-byte whereas with block devices, you
can read or write block-by-block. Also, there are
pseudo-devices. Pseudo-devices can mimic some
physical device and hence provide some access of a
kernel function, etc. Usually, pseudo-devices are
implemented as character devices. FreeBSD does not
support block devices anymore.

http://www.codesandciphers.org.uk/enigma/
http://www.codesandciphers.org.uk/enigma/
https://github.com/rafael-santiago/dev-enigma/etc/brute-force.md
https://github.com/rafael-santiago/dev-enigma/etc/brute-force.md
https://github.com/rafael-santiago/dev-enigma/etc/brute-force.md
https://github.com/rafael-santiago/dev-enigma/etc/brute-force.md

In the next sections, we will discuss about pseudo and
character devices. Details of other types of devices will
not be provided or discussed.

The main functions implemented by a character
device

A character device creates a “virtual” file within /dev
directory. Through this file, it is possible from the user
space to use the kernel functions implemented by this
device by simply handling the “virtual” file.

Due to file handling, the necessities when you implement
a character device are important to support the four
main file functions: open, read, write and close.

In general, the open function should return a valid file
descriptor. The read function should return some read
bytes and the amount of read bytes. The write function
should write the passed bytes and return the amount of
written bytes. And finally, the close function should clean
up the internal state associated with the file descriptor
previously returned by the open function.

The programmatic way of accessing these device driver
functions from the user space is by using the libc
functions: open, read, write and close. Therefore, get a
file descriptor with the open function and handle this
descriptor with read, write and close functions.

Sometimes it is also necessary to setup or configure the
device driver in some way. If the device driver needs this,
it is necessary to implement the ioctl function. From libc,
call the ioctl function passing the related file descriptor
to control the device from the user space.

Now, let’s go back to the Enigma machine. Since Enigma
machine acts like a cryptographic typewriter, it is
possible to implement it as a character device. The
reciprocal behavior is nice too because all that is
necessary to do with the device is to configure the initial
state with an ioctl call, feed the device with some data
through a write call, and get the result back with a read
call. The encryption or decryption depends on what was
written because again, these two operations in the
Enigma are the same. Now is time to dive into the
/dev/enigma code.

The /dev/enigma code base layout

The /dev/enigma repository is organized in two main
sub-directories: etc and src. The etc directory contains
some additional support files and the src, of course,
contains the source code. Within the src subdirectory,

24

the device driver is divided into modules. Each module is
a distinct sub-directory. These modules are: dev_ctx,
ebuf, eel, enigmactl, fops_impl and mod_traps.

The dev_ctx module

This module creates virtual sessions of the /dev/enigma.
This part of the device driver allows different users and
data on the same device. The way of making it work is to
representing each session as a structure, and also by
using mutexes with their synchronization primitives.

When a user opens the device, a “usage line” is created.
This usage is expressed in the following C structure:

struct dev _enigma usage line ctx {
libeel enigma ctx *enigma;
ebuf ctx *ebuf head, *ebuf tail;
#if defined(linux)
struct mutex lock;
#elif defined(FreeBSD)

struct mtx lock;
#endif
int has_init;

}s

Listing 1: The dev_enigma usage_line ctx struct

Each usage line has its mutex (the field named as
"lock"). The libeel_enigma_ctx pointer is related with the
Enigma machine emulator that belongs to the user’s
session. The ebuf_ctx pointers are related with a linked
list that stores the input andoutput data.

However, the device driver as a whole is represented by
another structure called dev_enigma_ctx, detailed in
Code Listing 2.

struct dev_enigma ctx {

struct dev_enigma usage line ctx
ulines[DEV_USAGE LINES NR];
#if defined(linux)

int major nr;

struct class *device class;

struct device *device;
#elif defined(FreeBSD)

struct cdev *device;
#endif

libeel enigma ctx *default setting;
#if defined(linux)

struct mutex lock;
#elif defined(FreeBSD)

struct mtx lock;

#endif
}s

Listing 2: The dev_enigma_ctx struct

As shown in Code Listing 2, the dev_enigma_ctx struct
allows n usage lines, where n is DEV_USAGE_LINES_NR.
If there is need to allow more users simultaneously
handling the device, the constant
DEV_USAGE_LINES_NR should be increased.

With other codes described, we will return to the dev_ctx
module to understand some additional details.

The ebuf module

The ebuf is a tiny code module that implements linked
list conveniences. However, when you need some
convenience related with some data structure, you
should try to use the data structures provided by its
Kernel API. This reuse is considered a good practice.
Both FreeBSD and Linux have their implementation of
these well-known data structures.. But in the case of
/dev/enigma, the data structure was so minimal that it
was written from scratch. Code Listing 3 shows the
entire ebuf header file.

#ifndef DEV_ENIGMA EBUF H
#define DEV_ENIGMA EBUF H 1

typedef struct ebuf ctx {
char c;
struct ebuf ctx *next;

}ebuf ctx;

int add char to ebuf ctx(ebuf ctx **ebuf,

const char ¢, ebuf ctx
*tail);

char get char from ebuf ctx(ebuf ctx **ebuf);

void del ebuf ctx(ebuf ctx *ebuf);
#endif

Listing 3: The ebuf.h header file

The declared ebuf_ctx struct in th Code Listing 3 stores
the user inputs. This storage is done by the
add_char_to_ebuf_ctx(). Contrary to that, the
get_char_from_ebuf_ctx() removes data from ebuf_ctx
and also returns the removed data.

Remember that data here is merely a byte written or read
by the user, and it should be encrypted or decrypted
using the associated Enigma Machine’s setting. The
del_ebuf_ctx() function is a cleanup function used to free
the previously allocated ebuf_ctx resources.

25

The eel module

The eel module is related to the Enigma Machine
simulator. This was implemented according to the
specifications provided by Tony Sale’s website at
http://www.codesandciphers.org.uk/enigma/. For brevity,
it will not be discussed here.

The enigmactl module

The enigmactl module defines some C macros related to
the I/O control of the device driver. Also, inside this
directory is a source code of a user mode application.
The user mode application is a way of controlling the
device driver from the user space. The application works
by reading some command line options and emitting
some ioctl calls based on those.

To implement ioctl support for a device driver, it is
necessary to create the commands that the user
applications will pass as arguments to an ioctl call.
Creating a command involves defining constants using
special C macros provided by the Kernel API. These
definition macros can be _IO, _IOR, _IOW or _IOWR.

To decide what to use depends on the effect intended
with the ioctl call. Sometimes it is necessary to only set
up the device driver with some user data. In this case,
the command for doing it should be defined with the
macro _IOW (W means to write). When there is need to
only read some data and return it to the user, the ioctl
command should be defined with _IOR (R means to
read). When it is necessary to write from a user space
and return data to the user space, the macro _IOWR
(WR, guess what?) is the choice. Code Listing 4 follows
the ioctl commands of the /dev/enigma.

#define ENIGMA IOC MAGIC 'E'

#define ENIGMA RESET IO (ENIGMA IOC MAGIC, 0)
#define ENIGMA SET IOW(ENIGMA IOC MAGIC, 1,
libeel enigma_ctx)

#define ENIGMA SET DEFAULT SETTING
_IOW(ENIGMA IOC _MAGIC, 2,

#define ENIGMA UNSET DEFAULT SETTING
_IO(ENIGMA IOC MAGIC, 3)

libeel enigma ctx)

Listing 4: The ioctl commands supported by
/dev/enigma

The first argument passed with the macros _IO, _IOR,
_IOW and _IOWR is related to the group, and it must be
a byte constant. In FreeBSD, it seems okay to pick any,
contrary to Linux where you need to pick an unused one
so as to follow the convention adopted

http://www.codesandciphers.org.uk/enigma/
http://www.codesandciphers.org.uk/enigma/

(nttps://github.com/torvalds/linux/blob/master/Document
ation/ioctl/ioctl-number.txt).

The second argument passed with the _IO* macros is the
internal number. This will represent the related command.

The macros, _IOR and _IOW, also receive a third
argument related to the data type that should be read or
written. When it is necessary to pass more than one
argument, the convention is to pass a struct which
groups those multiple arguments. This is the case with
the /dev/enigma. The command ENIGMA_SET is emitted
for setting up the Enigma Machine simulator, and it
needs to inform the chosen rotors, their initial position,
their rings, the plugboard, the reflectors and so on. All
machine configurations go in the libeel_enigma_ctx
struct.

The ENIGMA_RESET command is used when there is a
necessity to reset the machine to its initial configuration
state. For decrypting a message, the machine needs to
be in the same initial configuration used during the
encryption process.

The ENIGMA_SET_DEFAULT_SETTING is an ioctl
command for defining a default machine setting to any
file descriptor acquired using the libc open() call. Thus,
once the device is opened it can start using it without
configuring the machine.

The ENIGMA_UNSET_DEFAULT_SETTING is used when
the default setting is not required anymore. It will clear
the default setting.

The fops_impl module

This module is where the functions of the device driver
(the file operation functions) are implemented. Let’s start
with the open function. The code of this function follows
the details in Code Listing 5.

MALLOC DEFINE (M DEV_OPEN,

"DEV_ENIGMA dev open", "Allocations

related with dev open");
int dev_open(struct cdev *dev,
int flags _ unused,

int devtype unused, struct thread
*td unused) {

int uline = new uline();

if == -1) {

return -EBUSY;

(uline

26

if (!lock uline(uline)) {
return -EBUSY;

}

dev->si drvl = malloc(sizeof (int), M DEV_OPEN,
M NOWAIT) ;
if (dev->si drvl != NULL) {
*((int *)dev->si drvl) = uline;

devfs set cdevpriv(dev->si drvl,
dev_close dtor);

}
unlock uline(uline);

return (dev->si drvl != NULL) ? 0 : -ENOMEM;

}

Listing 5: The /dev/enigma open function

As you can see in the prototype of dev_open(), the
functions used are some internal Kernel data structures
besides being flagged. The struct cdev is an important
structure that represents the character device. The

“ _unused” keyword is a way of saying to the compiler
that even when not using the related variable, that
variable should be there. Otherwise, the compiler will emit
warnings about the lack of usage of them. Note that it is
important to follow the prototype since these file operation
functions will be referenced later by some internal
function pointers.

The first thing done in the dev_open() function is attempt
to acquire a valid usage line (a user session with a
non-busy Enigma Machine). If the new_uline() function
returns -1, it means that there are no free Enigma
Machines at that moment Due to this, the dev_open()
warns that the device is currently busy. As a result, the
user application will get this error.

Otherwise, with a valid usage line, it is necessary set up
some information about a successful open operation.
The information will be used later for cleaning up the
usage line.

It is important to do all this work in an “atomic” way. Due
to this, first you need to call the lock_uline() function. This
function will try to lock the mutex associated with the
current usage line. When failing, an error is returned
indicating that the device is busy. If it succeeds, it
indicates that any other lock attempt will fail. This
guarantees that nothing besides the current instance will
access the following code section or any other code
section that depends on locking the related usage line
mutex.

https://github.com/torvalds/linux/blob/master/Documentation/ioctl/ioctl-number.txt
https://github.com/torvalds/linux/blob/master/Documentation/ioctl/ioctl-number.txt
https://github.com/torvalds/linux/blob/master/Documentation/ioctl/ioctl-number.txt
https://github.com/torvalds/linux/blob/master/Documentation/ioctl/ioctl-number.txt

After the lock is acquired, some memory bytes are
allocated that will point to the current usage line value
returned by the new_uline() function. Note that in the
Kernel API, the malloc call changes a little when
compared with the classical libc malloc.

The FreeBSD’s malloc from the Kernel API receives the
amount of memory to be allocated, an identifier for this
allocation call and a mode of operation. This operation
flag changes the malloc behavior depending on what you
pass. In the Code Listing 5, N_NOWAIT was used which
simply says not to wait if there is no memory. The reason
we use this flag is that it is considered a bad idea to use
a code that could block or hang the Kernel mode (thus
hanging the Kernel as a whole). When passed,
N_NOWAIT malloc could return NULL. Therefore, it is
paramount to check the nullity of the return otherwise,
we can get a kernel panic by accessing a null pointer.

The way of defining these parameters requested by the
malloc function is easy. You should use the macro
MALLOC_DECLARE, where you simply create an
identifier, for example,
MALLOC_DECLARE(M_DEV_OPEN). Thereafter, you
need to define a message related to this identifier by
using the macro MALLOC_DEFINE, for example:

MALLOC DEFINE (M DEV_OPEN,

“DEV_ENIGMA dev open”, “Allocations

related with dev_open”)

This can help to find bugs related with pointers allocated
using the defined identifier because the Kernel will log
the allocations using the passed identifier in the malloc
call. I find it pretty handy and cool.

The usage of devfs_set_cdevpriv() in the dev_open()
function (Code Listing 5) is a “trick” to clean up the
usage line when closing the file descriptor. If not done,
the device driver will start returning EBUSY errors even
when no one is using it.

Roughly speaking about the devfs_set_cdevpriv(), we are
saying, “well, when closing the file descriptor associated
with this open operation, call the function dev_close_dtor
thus passing the pointer si_drv1”. In this case, si_drv1
points to the usage line index. Having this index, we can
easily clean up the usage line in dev_close_dtor function,
making it ready to handle another future request. By the
way, the si_drv1 and si_drv2 are work void pointers left in
the cdev structure for a general use by developers.

27

The last thing to be done before returning is unlocking
the mutex so that other operations that depend on this
mutex can go ahead.

An important remark: The dev_open function does not
return the file descriptor that the user open call receives,
this is handled by the Kernel. The dev_open() function
should only tell the Kernel if an error occurred during its
execution. If everything is fine, the Kernel will return a
valid file descriptor to the user.

We have covered all the dev_open function code. Now,
Code Listing 6 shows the code of dev_close_dtor(). The
function code is straightforward, given a usage line
number the dev_close_dtor function calls the
release_uline() function passing this number. Afterwards,
the previous allocated memory by dev_open() is freed.

void dev_close dtor(void *data) {
if (data == NULL) {

return;

release uline (* (int *)data);
free(data, M DEV OPEN) ;
data

= NULL;
}

Listing 6: The dev_close_ dtor function

During the dev_open() code discussion, some
synchronization using mutexes was necessary but the
code for this synchronization was not detailed. Code
Listing 7 shows how the mutex of each usage line is
handled.

int lock uline(const int uline) {
if (! (uline >= 0 && uline <=

DEV_USAGE LINES NR)) {

return O;

#if defined(linux_)
if
(!mutex trylock(&g dev ctx.ulines[uline].lock)) {
return 0;
}
#elif defined(FreeBSD)
if
(!mtx trylock(&g dev ctx.ulines[uline].lock)) {

return O;

}
#endif

return 1;

Listing 7: The lock_uline function

There are a bunch of mutex functions, and you should
know all of them. The best resource for this is the man
pages. In Code Listing 7, for the FreeBSD, | have used
the function mtx_trylock. The nice thing about this
function is that it will not hang if the mutex is already
locked, instead it will simply fail. Remember: In Kernel
mode code, busy waiting tends to be pretty bad. If you
call lock_uline() and get a return value of 1, you can
proceed because no one else holds the lock.

Synchronization and mutexes are extensive subjects.
Therefore, if you want to dive into Kernel programming,
you should master everything you could about it. There
are other types of mutexes, for example, shared locks.
This type of lock can be acquired by more than one
instance depending on some rules that your code logic
implements. The best practice is to find the type of lock
that best fits your concurrency requirements.

The next relevant device driver function is the dev_write().

This function will be indirectly accessed when calling the
libc write() function from the user space over the file
descriptor previously returned by the libc open() function.
In the /dev/enigma context, a write() function means to
type something on the machine’s “keyboard”.

The dev_write() function follows the details in Code
Listing 8. The first thing done by this function is to read
the stored usage line reference from the field si_drv1 in
the cdev struct. The dev_write() function also uses
another structure called uio. The uio structure gathers
data that is flowing to and from Kernel space. In the
case of dev_write(), the data is flowing to the Kernel from
the user space. The ioflags parameter is a set of flags
related to the write operation and not relevant to the
/dev/enigma.

After making sure that the usage line is initialized (Is the
Enigma machine well-configured?), a buffer with “iovlen”
bytes is allocated. If this allocation succeeds, the usage
line is locked for exclusive use and the data from the
user space is transferred to the Kernel space by calling
the uiomove() function.

Personally, | find the uiomove() function awesome.
Because, when it is combined with the uio struct, the
function is capable of knowing our intentions about the

28

data transferring operation. So, you do not need to
explicitly use separated functions to copy data from the
Kernel to user spaces and vice versa. Basically, that is
what you do in other operating systems. In FreeBSD,
when it is necessary to transfer some data between the
Kernel space and user space, the uiomove() is
considered the best way to achieve that.

Once the data is transferred, all that should be done is to
parse the read buffer, adding each byte to the internal
linked list ebuf. However, the data can be encrypted or
decrypted with the Enigma by simply calling
“libeel_type(read_byte)”.

Finally, the usage line is unlocked and if all is okay, O is
returned. Otherwise, a generic fail is signaled. Note that
unlike other operating systems, in FreeBSD, the
dev_write() function should not return the amount of
written data.

The dev_read() function detailed in Code Listing 9 is
rather similar to the dev_write(). The difference is that the
data stored in the ebuf linked list is not post-processed
since it was already pre-processed during the dev_write()
execution. Thus, the stored data is just removed from the
linked list and returned to the user space.

Note that even with a different context, the dev_read()
also uses uiomove() to transfer data from the Kernel to
user space. But in this case, it is not necessary to
allocate a buffer because it is transferred to the passed
user buffer. All that should be done is to avoid going
beyond the buffer limit. The condition, “read_bytes !=
user_len”, prevents exceeding the buffer limit.

Like dev_write(), the dev_read() function only tells the
Kernel if the operation was successful or not.

The dev_ioctl() function is responsible for implementing
the device driver control routines. Besides a struct cdey,
this function receives the command index, the data
passed by the user (if the ioctl command is a “write type”
command) and a thread struct. The command index is
related to the previously defined indexes in
“enigmactl.h”.

If the cmd is equaled to ENIGMA_RESET, a lock attempt
over the usage line mutex is done, and once locked, the
function libeel_init_machine() is called to put the Enigma
simulator in its initial state.

If the cmd is equaled to ENIGMA_SET, the data passed
by the user is copied from the Enigma struct to the usage
line context (it represents an Enigma setting). This also

calls libeel_init_machine() passing the new read settings
from the data pointer. bp = temp buf;

bp end = bp + temp buf size;
The commands, ENIGMA_SET_DEFAULT_SETTING and

ENIGMA_UNSET_DEFAULT_SETTING do not depend on while (bp != bp end) |

locking the usage line because they only handle a default libeel enigma input (ulp->enigma) = *bp;
setting copy used by all acquired /dev/enigma instances. written bytes +=

When a default is set it is loaded from the data pointer add_char to_ebuf ctx(sulp->ebuf head,

passed by the user. When the default is cleared, the

function unset_default_enigma_setting() is called and the libeel type(ulp->enigma),

previous default setting is discarded. ,
ulp->ebuf tail);

H ; bp++;
The dev_ioctl() when there is no error, should return 0. P
The dev_ioctl() function is detailed in Code Listing 10. }
int dev_write(struct cdev *dev, struct uio *uio, free(temp buf, M DEV WRITE) ;

int ioflags) {
1 1 * .
struct dev_enigma usage line ctx *ulp; unlock uline (uline);
int uline;

char *temp buf = NULL;

return (written bytes == temp buf size) ? 0
char *bp, *bp_end; EFAULT;
ssize t written bytes = 0; }
size t temp buf size = 0;
Listing 8: The dev_write function
uline = *(int *)dev->si drvl;
ulp = dev uline ctx(uline); int dev_read(struct cdev *dev, struct uio *uio, int
ioflags) {
if (ulp == NULL) { int uline;
return -EBADF; struct dev_enigma usage line ctx *ulp;
} char byte;
size t read bytes = 0;
if (lulp->has_init) { size_t user_len = 0;
return -EINVAL;
} uline = *(int *)dev->si drvl;
temp buf size = uio->uio iov->iov len; ulp = dev_uline ctx(uline);
temp buf = (char *) malloc(temp buf size,
M DEV WRITE, M NOWAIT) ;
DEV_ r M) if (ulp == NULL) |{
return -EBADF;
if (temp buf == NULL) ({)
return -ENOMEM;
) if (!lock uline(uline)) {
return -EBUSY;
if (!lock uline(uline)) {)
return -EBUSY;
} user len = uio->uio_iov->iov_len;
if (uiomove (temp_buf, temp buf size, uio) != 0) while (read bytes != user len && ulp->ebuf head
{ != NULL) {
free (temp buf, M DEV WRITE); byte =
unlock uline (uline); get char from ebuf ctx(&ulp->ebuf head);
return -EFAULT; if (uiomove (&byte, 1, uio) != 0) {
} read bytes = 0;

29

goto _ dev read epilogue;

} } else {
read bytes++; result = -EINVAL;
} }
break;

__dev_read epilogue:

unlock uline (uline); case ENIGMA SET:
if (data == NULL) {
return (read bytes == 0) ? EFAULT : O; return -EFAULT;

Listing 9: The dev_read function if (!lock uline (uline)) {

return -EBUSY;

int dev_ioctl(struct cdev *dev, u long cmd, caddr_ t
data, int flag, struct thread *td) ({ memcpy (ulp->enigma, (libeel enigma ctx

long result = 0; *)data, sizeof (libeel enigma ctx));

libeel enigma ctx user enigma;

struct dev enigma usage line ctx *ulp; if (! (ulp->has init =
int uline; libeel init machine (ulp->enigma))) {
result = -EINVAL;
if (dev->si_drvl == NULL) { } else if (ulp->ebuf head != NULL) {

return -EINVAL; del ebuf ctx(ulp->ebuf head);

} ulp->ebuf head = NULL;

uline = *(int *)dev->si drvl;

unlock uline (uline);

ulp = dev uline ctx(uline); break;

if (ulp == NULL) { case ENIGMA SET DEFAULT SETTING:
return -EINVAL; if (data == NULL) {

} return -EFAULT;

switch (cmd) {
memcpy (&user enigma, (libeel enigma ctx

*)data, sizeof(libeel enigma ctx));
case ENIGMA RESET: — _

if (ulp->has_init) {

if
(!set default enigma setting(&user enigma)) {
. | . .
if (!lock uline(uline)) { result = -EINVAL;
return -EBUSY;)
) break;

ulp->has init =
. L . . case ENIGMA UNSET DEFAULT SETTING:
libeel init machine (ulp->enigma) ; - - -

if (!unset default enigma setting()) {

if (lulp->has_init) ({ result = -EFAULT;

result = -EINVAL; }
} else if (ulp->ebuf head != NULL) break;

{

del ebuf ctx(ulp->ebuf head); default:

ulp->ebuf head = NULL; result = -ENOTTY;
} . break;

unlock uline (uline); }

30

return result;

}

Listing 10: The dev_ioctl function

The last file operation function that must be detailed is
the dev_close() function. This function simply returns

EBADF error if for some reason the pointer si_drv1 is null.

This pointer is used to store the reference to the
associated /dev/enigma usage line. If this is null, there is
nothing to be done with the file descriptor because all
session reference was lost. To avoid more serious errors,
the current file operation is invalidated by returning
EBADF. The dev_close() follows the details in Code

Listing 11. It is important in normal conditions to return 0.

Otherwise, the Kernel will return an error to the user.
int dev_close(struct cdev *dev,
int flags _ unused,
int devtype _ unused,

struct thread *td _ unused) {
if (dev->si drvl == NULL) ({

return -EBADF;
}

return 0;

}

Listing 11: The dev_close() function

The file operation functions, dev_open(), dev_write(),
dev_read(), dev_ioctl() and dev_close(), alone do not
compose the device driver. They only specify how the
device driver should act during the open, write, read,
ioctl and close requests respectively.

Now, it is time to take a look at the mod_traps module.
The mod_traps module

In the mod_traps sub-directory, there are
implementation files, “mod_init.c”, “mod_exit.c” and
“mod_quiesce.c”. Each of these files implements an
important function that will be called during the device

driver's life cycle.

Let’s start with Code Listing 12 that shows the
enigma_init() function.

The enigma_init() function shows us interesting things.
The first is the way of initializing a mutex variable by
calling mtx_init(). Note that the second parameter passed
in mtx_init() could help you when debugging deadlocks,

race conditions bugs, etc. This is because the parameter
identifies the related mutex in the system logs.

The master mutex is directly initialized into the
enigma_init(). However, each usage line has its mutex
that is initialized in the init_ulines() function.

The function make_dev() registers and creates the device
driver file descriptor within the /dev/ subdirectory. Thus,
after calling make_dev(), if all succeeds, we will have
some Enigma Machines ready in the /dev eventually.
Nonetheless, the user will only see one Enigma there.

Another interesting and important thing present in Code
Listing 12 is the declaration of the dev_enigma_cdevsw
structure. This will register the file operation functions of
the device thus creating a bridge between a user space
call and the Kernel. Therefore, when some operation is
done with the device driver, the Kernel will know what to
call in order to handle the request. The struct initialization
uses the C99 convention. The struct cdevsw has much
more fields but they are not relevant for a character
device. In this way, it is possible to initialize only what is
deemed necessary.

Note that the registration of the file operation functions
has occurred during the make_dev() call.

static struct cdevsw dev_enigma cdevsw = {

.d_version = D _VERSION,
.d _open = dev_open,
.d close = dev_close,

.d _read = dev_read,

.d_write dev_write,

.d ioctl dev ioctl,

.d name = DEVNAME
b

int enigma_ init (void) {
uprintf ("dev/enigma: Initializing the

/dev/enigma...\n");

dev_ctx()->default setting = NULL;

mtx init (&dev_ctx()->lock,
"DEV_ENIGMA device lock",
NULL,

MTX DEF) ;

init ulines();

dev_ctx()->device =
make dev (&dev_enigma cdevsw,
0,
UID ROOT,

GID WHEEL,
0666,
DEVNAME) ;

if (dev_ctx()->device == NULL) {
uprintf ("dev/enigma: device creation

fail.\n");

return 1;

uprintf ("dev/enigma: Done.\n");

return 0;

Listing 12: The enigma_init function

The safe_for_unloading() function is called when the KLD
is unloaded and it checks if the device driver is busy or
not. The check logic of this function is not the best
because it does not guarantee that a user just after
unlocking the mutex will not lock the mutex again.
However, it will work in most cases. Code Listing 13
follows the safe_for_unloading() function code. Code
Listing 14 details the enigma_exit() function. This function
releases the internal structures held by the device driver,
and also releases the device driver. As a result, the
/dev/enigma file will disappear since the KLD was
unloaded.

int safe for unloading(void) {
int safe = 1;

int u;

for (u = 0; u < DEV_USAGE LINES NR && safe;

ut+) |
if (!lock uline(u)) {
safe = 0;
} else {
safe = (dev_ctx()->ulines([u].enigma ==
NULL) ;

unlock uline (u);

return safe;

Listing 13: The safe for unloading function

void enigma exit (void) {
uprintf ("dev/enigma: The /dev/enigma ”

”is being unloaded...\n");

deinit ulines();

unset default enigma setting();
mtx destroy(&dev _ctx()->lock);
destroy dev(dev_ctx()->device);

uprintf ("dev/enigma: Done.\n");

Listing 14: The enigma_exit function

The functions enigma_init(), safe_for_unload() and
enigma_exit() are triggered when the Kernel module that
represents the device driver is loaded or unloaded. These
functions also can be understood as the events that have
occurred during the device driver life cycle.

In the src sub-directory, there is tan implementation file
called “mod.c”. This file has C code for FreeBSD and
Linux, but Code Listing 15 shows only the FreeBSD part.
According to Code Listing 15, a function with a specific
prototype follows is implemented. This function has a
suggestive name: enigma_modevent. Depending on the
received event value, one of the three functions
implemented in the mod_traps will be called. When the
module is loaded, the event variable will be equaled to
MOD_LOAD. When the module is being unloaded,
without force, the “event” will be equaled to
MOD_QUIESCE. Finally, when actually unloaded, the
event variable will be equaled to MOD_UNLOAD.

The nice thing about the MOD_QUIESCE event handling
is that if we return anything different from zero, the
unloading will be canceled. This is because non-zero
values mean an error case.

You can understand the enigma_modevent() as the “main
function” of the driver. However, handling the events in
the enigma_modevent() function does not have any effect
when this function is isolated. It is important to inform the
Kernel that the enigma_modevent() is the main entry
point. In doing so, the Kernel APl macro DEV_MODULE
registers this function as the effective device driver event
handler.

static int enigma modevent (module t mod _ unused,

int event,

void *arg _ unused) {
int error = 0;
switch (event) {
case MOD LOAD:
error = enigma init();

break;

case MOD UNLOAD:
enigma_exit ();

break;

case MOD QUIESCE:

if (!safe for unloading()) {
error = EBUSY;
}
break;
default:

error = EOPNOTSUPP;

break;

return error;

DEV_MODULE (enigma, enigma modevent, NULL);

Listing 15: The enigma_modevent function

Having covered all the device driver code, let’s now get
some relevant information on how to build the entire
code.

Building the /dev/enigma

First, here is an important remark: to compile any device
driver code discussed in this article, you must have the
FreeBSD source code. Maybe you had already copied it
when you installed your FreeBSD copy. Take a look in
your /usr/src directory. If you do not have the source
code, visit https://www.freebsd.org/developers/cvs.html
for more information.

Bear in mind that only the device driver code related to
FreeBSD was discussed above. The driver also compiles
on Linux and in this case, of course, another Kernel API
is used. The nice part about the /dev/enigma build is that
the user does not need to edit anything to make the
compilation possible in these two “Worlds”. Actually, the
user should invoke the same command in the two
platforms.

| usually use my build system for my weekend projects. |
call it Hefesto
(https://github.com/rafael-santiago/hefesto). | will show
you how to compile the /dev/enigma using Hefesto, but
first, | will show you how to compile simpler drivers using
the FreeBSD build framework, which is based on Make.
Hence all you need to do is compose a Makefile and
indicate your resources in it.

33

To compile a device driver in FreeBSD, use the
framework implemented in bsd.kmod.mk. It can be done
by including it into your Makefile. Also, it is important to
indicate the output module name and the source files of
this Kernel module. Code Listing 16 shows a Makefile
sample.

KMOD= sample
SRC= device.c
include <bsd.kmod.mk>

Listing 16: A rather basic device driver Makefile
sample

The problem with using a Makefile directly is the
necessity of keeping track of two different Makefiles
since the /dev/enigma should be compiled in FreeBSD
and also Linux. Another problem is managing the
Makefile. Personally, | find it boring and when the project
is well-structured, divided into several sub-directories,
the Makefile tends to become trickier and cryptic. As |
said, in my weekend projects, | enjoy the freedom of
using my stuff. Therefore, | decided to get rid of these
Make complications by using one more layer of
abstraction: my build system.

Using Hefesto, | just have to track one build script and it
will make sense in any supported platform. Additionally, |
can perform minor programmatic tasks such as installing
and uninstalling the software, run tests and check if it is
ok or not in a non-cryptic fashion. Hence, everything can
be accomplished with only one tool, and as a result, only
one programming language syntax for everything.

The way how | have been building the
/dev/enigma

To build the discussed device driver using my build
system, you need to clone three of my repositories using
the following commands:

git clone https://github.com/rafael-santiago/hefesto -—recursive

git clone https://github.com/rafael-santiago/helios --recursive

git clone https://github.com/rafael-santiago/dev-enigma —
recursive

After doing this, you should move to the Hefesto’s src
sub-directory and call the bootstrap build (build.sh):

cd hefesto/src

/usr/local/bin/bash build.sh

https://www.freebsd.org/developers/cvs.html
https://www.freebsd.org/developers/cvs.html
https://github.com/rafael-santiago/hefesto
https://github.com/rafael-santiago/hefesto
https://github.com/rafael-santiago/hefesto
https://github.com/rafael-santiago/hefesto
https://github.com/rafael-santiago/helios
https://github.com/rafael-santiago/helios
https://github.com/rafael-santiago/dev-enigma
https://github.com/rafael-santiago/dev-enigma

After calling the bootstrap build, a prompt confirming
where to install hefesto will be presented. All that is
required of you is to confirm the location and Hefesto will
be installed on your machine. However, you should do a
new login in order to reload some environment variables
(opening a new console window has the same effect if
you are on X). The Hefesto’s copy related to the
downloaded repository can be removed.

At this instant, you should “teach” Hefesto how to build a
FreeBSD device driver. This should be done in
accordance with the Helios downloaded copy in the
following way:

cd helios

hefesto --install=freebsd-module-toolset

The Helios can be understood as a “standard library” for
Hefesto. Once the FreeBSD module toolset is installed,
you can remove your Helios copy, and now Hefesto
knows how to build a FreeBSD KLD.

To build the /dev/enigma , you should move to its src
sub-directory and call Hefesto from there.

cd dev-enigma/src

hefesto

The device-driver and the support codes, such as
enigmactl, will be compiled. The tests will run. Finally, the
“enigma.ko” file will be created in the src sub-directory.
The output should be something like:

(..)

**% All /dev/enigma was built.

(...)

If you want to do a quick loading test, use the “kldload
Jenigma.ko” command. It is important to use “./”
otherwise the kldload will not properly find the module.
After executing the kldload command, a load message
defined in the enigma_init() function, will be printed in the
console as described below:

dev/enigma: Initializing the /dev/enigma...

dev/enigma: Done.

The kldstat command is a useful command that shows
information about the loaded modules.

Its output shows “enigma.ko”, indicating that it has been
loaded. If a Is /dev is executed, it also shows the device

34

driver’s virtual file. In Figure 1, you can see Beastie
pointing to it.

-
-) - e "

Figure 1: The Is /dev output after loading enigma.ko

To unload the enigma.ko you should use the command
“kldunload enigma”.

If you want to install the /dev/enigma, you should run the
command “hefesto --install”. To uninstall, use “hefesto
--uninstall”. Even when installed, you still need to load
the module with kidload before using it.

Using the /dev/enigma

Due to the virtual sessions allowed by the device driver,
opening the device and start writing or reading
something is impossible. If you do it, you will get an error
because the opened Enigma machine does not have a
valid configuration yet. With the “enigmact!|” application,
it is possible to set a default configuration for opened
sessions. This application comes in handy for a user who
wants to use the device driver directly from a shell script.

The enigmactl expects several options related to the
Enigma Machine components. If you run it without
options, you can learn more about it. The enigmactl can
be used through the enigmactl.sh shell script. This shell
script uses the dialog command to configure the Enigma
machine in an easier and interactive way.

Also, after opening the device driver, it is essential to
hold the file descriptor because it represents the
acquired session. So, the “echo foobar > /dev/enigma”
command does not work. Code Listing 17 shows how
to handle file descriptors in a shell script. It takes into
consideration that /dev/enigma was previously installed
by the “hefesto -—install’command.

The line “exec <> 3 /dev/enigma” present in Code
Listing 17 will open the device driver file for reading and
writing.

Before executing the Shell script in Code Listing 17, it is
required to execute the command “kidload
/usr/local/share/dev-enigma/mod/enigma.ko”. For an
interested reader, the following is a short encrypted
message:

“JTBXDUBAADYLVSWCVURPODZNVXPYSPWVSGNLV
MPWURBJGGCYOCGOEUOCG”

The Enigma setting used was:

Rotors: VII, V and VIII (respectively)
Rotor position at: B, S, D (respectively)
Reflector: B

All rings at position “1”.

Plug-board: F/B,S/D (this is the input format expected
by the “enigmactl.sh” script)

Would you be able to decrypt the message?

#!/usr/local/bin/bash

File name: 'enigma.sh'

if [-f /usr/local/bin/enigmactl.sh] ; then
dialog --yesno "Do you want setup /dev/enigma?"
00
if [$? -eq 0]; then
/usr/local/bin/enigmactl.sh
if [$? -ne 0]; then
exit $°?
fi
fi
fi
exec 3<>/dev/enigma
if [$? -ne 0]; then

echo "error: when trying to open /dev/enigma."

exit $0
fi
text=5$1
if [-z S$text]; then

text=$(dialog --stdout --inputbox "Type the
text to be written to /dev/enigma"™ 0 0)

35

fi

if [-z S$text]; then
echo ""
echo "INFO: aborted by the user."
exit 1

fi

echo S$text>&3

output=$ (cat <&3)

dialog --title "/dev/enigma output" --infobox
Soutput 0 0

exec 3>&-

Listing 17: Using the /dev/enigma from a shell
script

How to get a multi-platform code?

Having not discussed the source code part for Linux, this
tiny device driver code shows how C language works
pretty well on producing a multi-platform code. The C
pre-processor can be a powerful tool in this case.
Additionally, is it important to add more abstraction
layers to your code. This explains why the code was not
written as a huge single implementation file.

The layout of the repository can also contribute to the
simplicity when producing the multi-platform code. For
/dev/enigma, the fops_impl and mod_traps
sub-directories concentrate all platform dependent
codes. As a result, the codes for FreeBSD are stored in
the “freebsd” sub-directory, and for Linux, in the “linux”
sub-directory. These directory names help the build
system easily get the right codes for the compilation.
Code Listing 18 shows a part of the main build script. As
you can see, most of the additional directories have
been defined statically except for “fops_impl” and
“mod_traps” where hefesto.sys.os_name() was used.
This build system’s function will return “freebsd” when on
FreeBSD and Linux when on “linux”.

dev-enigma.prologue () {

cleaner () ;
device installer();

$includes.add item(hefesto.sys.pwd());

S$includes.add item(hefesto.sys.make path (hefesto.

lleel")) ;

Sy
s.pwd(),

$includes.add item(hefesto.sys.make path (hefesto.sy
s.pwd (), "ebuf"));

$includes.add item(hefesto.sys.make path (hefesto.sy
s.pwd (), "dev _ctx"));

$includes.add item(hefesto.sys.make path (hefesto.sy
s.pwd(),

hefesto.sys.make path("fops_ impl",
hefesto.sys.os name())));

$includes.add item(hefesto.sys.make path (hefesto.sy
s.pwd (),

hefesto.sys.make path("mod traps",
hefesto.sys.os name())));

$includes.add item(hefesto.sys.make path (hefesto.sy
s.pwd (), "enigmactl"));

}

Listing 18: How the codes are scanned for the
compilation

Also, it is vital to abstract the build issues when changing
platforms. The user should not worry about these
complications when just compiling and using their code.
In /dev/enigma, the build system allows a conditional
code inclusion. Based on the current platform, we can
easily change the build toolset. As a result, the user can
build a platform dependent code straightforwardly and
transparently. Much more was done using the related
build system, but it is out of the article’s scope. Thus, we
will stop here.

Conclusions

The discussed driver shows that to write a device driver
is not rocket science. It also shows how powerful the C
language is. The internal DSL implemented using C
Macros guides the programmers across the device driver
code development, making the entire process much
easier. C pointers and especially function pointers are
also powerful. You can read more about the power of the
C pointers in the book “Beautiful Code”, more
specifically in the chapter “Another Level of Indirection”
by Diomidis Spinellis. This article also reveals the
importance of abstraction when coding something and
shows that a real good abstraction is much more than
simply creating tons of Classes in an OO fashioned way.

If you liked this article and now interested in device
driver programming, you should start reading the
following books: “FreeBSD Device Drivers: A guide for
the Intrepid” by Joseph Kong and “Linux Device Drivers”
by Alessandro Rubini.

If you are interested in knowing more about
cryptography, a nice introduction best suited for you can
be found in “The Code Book” by Simon Singh. Are you
searching for advanced topics? “Applied Cryptography”
by Bruce Schneier, “Handbook of Applied Cryptography”
by Menezes, Oorschot and Vanstone and
“Understanding Cryptography” by Paar and Pelzl would
be worth your time.

If you liked /dev/enigma, you can download the code at
https://github.com/rafael-santiago/dev-enigma. If you are
searching for a library to implement your Enigma
simulator, maybe my library at
https://github.com/rafael-santiago/eel could be useful to
you.

Remember: the Enigma is an outdated cipher. You should
not use it for secrecy anymore but just for fun.

About the Author

Rafael Santiago de Souza
Netto is a Computer Scientist
from Brazil. His main areas of
interest are Programming,
Computer Networks,
Operating Systems, UNIX
culture, Compilers,
Cryptography, Information
Security, Social Coding. He
has been working as Software
Developer since 2000. You
can find him at GitHub (as
rafael-santiago).

https://github.com/rafael-santiago/dev-enigma
https://github.com/rafael-santiago/dev-enigma
https://github.com/rafael-santiago/eel
https://github.com/rafael-santiago/eel

Rack-mount networking server
Designed for BSD and Linux Systems

Server

il -0H oo

DESIGNEDFOR

£

GNU/ Linux

Up to 5.5Gbit/s
routing power!

Ned

Designed. Certified. Supported

® 6 NICs w/ Intel igh(4) driver w/ bypass ®» BGP & OSPF routing

» Hand-picked server chipsets » Firewall & UTM Security Appliances
» Netmap Ready (FreeBSD & pfSense) » [ntrusion Detection & WAF

» Up to 14 Gigabit expansion ports » CDN & Web Cache / Proxy

» Up to 4x10GbE SFP+ expansion » E-mail Server & SMTP Filtering

contactus@serveru.us | www.serveru.us
8001 NW 64th St. Miami, LF 33166 | +1(305) 421-9956

FREEBSD

Fluentd for Centralizing Logs

In this article, | will talk about how to manage diverse and
disparate logs on FreeBSD servers. As system
administrators, when we want to know which services
are disabled or not running, we check our logs in
/var/log. The most useful commands we can use to
check if the services are running in FreeBSD are “ps” and
“tail”’. As an example, we want to know if our web server
(e.g. Nginx) is running. Using a combination with “grep”
command, we can do something similar to what has
been described below. Here is the result from those
commands.

$ ps ax | grep “nginx”

726 - 1Is 0:00.00 nginx: master
process /usr/local/sbin/nginx

728 - S 1:18.10 nginx: worker
process (nginx)

729 - S 1:23.45 nginx: worker
process (nginx)
86660 0 S+ 0:00.00 grep nginx

There are five columns in the result, and we can assure
that our web server is running well. If no result after we
executed the commands then it means that our web
server is not running. Start the web server using this
command.

$ sudo service nginx start

Performing sanity check on nginx
configuration:
nginx: unknown directive in

[emerg] "ttp"

/usr/local/etc/nginx/nginx.conf:19
nginx: configuration file
/usr/local/etc/nginx/nginx.conf test
failed

38

Starting nginx.

nginx: [emerg] unknown directive "ttp" in

/usr/local/etc/nginx/nginx.conf:19

/usr/local/etc/rc.d/nginx: WARNING: failed

to start nginx

Oops! Our Nginx web server failed to start. Let’s check
the log to see what the underlying problem is:

$ sudo tail -f /var/log/nginx-error.log

2017/03/09 08:54:03 94786#0:

invalid number of arguments in "root"

[emerg]

directive in

/usr/local/etc/nginx/nginx.conf:311

2017/06/01 04:03:15

unknown directive "ttp" in

[emerg] 60819#0:

/usr/local/etc/nginx/nginx.conf:19

2017/06/01 04:03:15 [emerg] 60820#0:
A ttp \AJ

/usr/local/etc/nginx/nginx.conf:19

unknown directive in

If you are an experienced system administrator, you can
handle that simple error and fix it in no time. However,
imagine if we were not responsible for one service, but
hundreds or thousands of services. Tracking down errors
on various machines and different log files would be time
consuming and frustrating. There are some solutions for
managing logs at scale. There are open-source
monitoring applications like Zabbix and SolarWinds. You
can use them if you want, but in this article, | will show
you how to integrate our logs so that in the future, we
can analyze it for general purpose.

Fluentd Architecture

| will introduce you to Fluentd (http://www.fluentd.org/),
an open-source data collector. Fluentd is very modular
and we can integrate almost any logs and unify the logs
and processing them. Figure 1 shows you Fluentd’s
architecture, and gives you a sense of how you can make
your logs easier to manage.

Access logs Alerting
Apache Nagios
App logs \ Analysis
Frontend MongoDB
Backend MySQL
System logs /f v eﬂtd\ Hadoop
syslogd Q
, Archiving
filter / buffer / routing
Databases Amazon S3

Figure 1. Fluentd architecture (source: https://www.fluentd.org)

Fluentd Installation

Let us install Fluentd on FreeBSD server. I’'m using
FreeBSD 10.3 with 1GB RAM. There are two types
installation we can use, first by using ports collection
(/usr/ports) or second you can compile from the
source. In this case, we are going to use ports for our
installation. Remember, before we try to install from the
ports, we must update our ports.

$ cd /usr/ports
S sudo portsnap fetch update

Wait for a couple minutes until our ports are fresh with
new updates. After that, we can try to find if Fluentd
exist in the ports collection. Use make search
name="<key>". Still in the current directory of /usr/ports,
execute this command.

S make search name="fluentd”

Depending on your FreeBSD, it may display different
results. Below, you can see that there are two different

packages of Fluentd.
Port: rubygem-fluentd-0.12.14 1

Path:
/usr/ports/sysutils/rubygem-fluentd

39

Info: Fluent event collector

Maint: kuriyama@FreeBSD.org

B-deps: indexinfo-0.2.6
libedit-3.1.20170329 2,1 libexecinfo-1.1 3
libffi-3.2.1

libyaml-0.1.6 2 ruby-2.3.4,1
ruby23-gems-2.6.12

R-deps: indexinfo-0.2.6
libedit-3.1.20170329 2,1 libexecinfo-1.1 3
libffi-3.2.1

libyaml-0.1.6 2 ruby-2.3.4,1
ruby23-gems-2.6.12 rubygem-cool.io-1.2.4 1
rubygem-

http parser.rb-0.6.0
rubygem-iobuffer-1.1.2 rubygem-json-2.1.0
rubygem-msgpack-0

.5.12 rubygem-sigdump-0.2.4

rubygem-thread safe-0.3.6
rubygem-tzinfo-1.2.3 rubyg

em-yajl-ruby-1.3.0

WIWW : http://fluentd.org/
Port: rubygem-fluentd010-0.10.61
Path:

/usr/ports/sysutils/rubygem-fluentd010

Info: Fluent event collector
Maint: kuriyama@FreeBSD.org
B-deps: indexinfo-0.2.6

libedit-3.1.20170329 2,1 libexecinfo-1.1 3
libffi-3.2.1

libyaml-0.1.6 2 ruby-2.3.4,1
ruby23-gems-2.6.12

R-deps: indexinfo-0.2.6
libedit-3.1.20170329 2,1 libexecinfo-1.1 3
libffi-3.2.1

libyaml-0.1.6_ 2 ruby-2.3.4,1
ruby23-gems-2.6.12 rubygem-cool.io-1.2.4 1
rubygem-

http parser.rb-0.6.0
rubygem-iobuffer-1.1.2 rubygem-json-2.1.0
rubygem-msgpack-0

.5.12 rubygem-sigdump-0.2.4
rubygem-yajl-ruby-1.3.0

WIWW : http://fluentd.org/

http://fluentd.org
http://fluentd.org

The newer and stable version is v0.12. Therefore, we will
install using the stable version. Go to
/usr/ports/sysutils/rubygem-fluentd folder
and install using make install command. There is one
dependency, rubygems-tzinfo-data, and is not
included in this stable version. Let’s go to
/usr/ports/devel and install the dependency.

$ cd /usr/ports/devel/rubygems-tzinfo-data

$ sudo make install

After that we can start install rubygem-fluentd

$ cd
/usr/ports/sysutils/rubygem-fluentd

S sudo make install

For now, accept the default installation. Fluentd will
install ruby , the language it was written in. If you don’t
have any Ruby installation, the ports will automatically
download and install it. Sometimes, we could be having
it in our server. For my case, | got an error. We can either
uninstall the old Ruby or we can upgrade it by executing
make reinstall command. In this article, | prefer to
uninstall the old Ruby.

| don’t have any issue removing my old version of Ruby
(/usr/ports/lang/ruby22). Change our current
directory to /usr/ports/lang/ruby22 and execute
this command make deinstall to uninstall old Ruby.
Then, execute make install in
/usr/ports/sysutils/rubygem-fluentd.

Configure fluentd

Every installation uses the ports located in

/usr/local, and the configuration in
/usr/local/etc. Fluentd’s configuration is in
/usr/local/etc/fluentd. There are six directives we
can use for configuration:

source for determining input sources

match for output destinations

filter for event processing pipelines

system for system wide configuration

- label for group output and filter for internal routing

40

+ @include for include other files

In this case, we now want to make our Nginx logs to be
recorded by Fluentd. Type the following configuration in
fluentd.conf.

<source>
type tail
format nginx
path /var/log/nginx-access.log
tag nginx.access
</source>

Next, we start the fluentd daemon using this command:
sudo /usr/local/bin/fluentd.

S sudo /usr/local/bin/fluentd -c
/usr/local/etc/fluentd/fluent.conf

We only have one log, the nginx-access.log. You can put
another log into fluentd like syslog and etc. To make our
fluentd auto start in the next reboot, we should put this
flag, fluentd enable="YES” in /etc/rc.conf. To
start or stop fluentd, we don’t need the long command
like we used above. The following start and stop
commands can do it.

$ sudo service fluentd stop

S sudo service fluentd start

Debugging fluentd

We know that our fluentd service is working by using ps
ax command. However, how sure are we that our log is
working and read by fluentd?. First, stop our fluentd
service and then execute the command by manually
using the following command.

S sudo /usr/local/bin/fluentd -c
/usr/local/etc/fluentd/fluent.conf

2017-06-09 13:30:54 +0000
config file
path="/usr/local/etc/fluentd/fluent.conf"

[info]: reading

2017-06-09 13:30:54 +0000
fluentd-0.12.14

[info]: starting

2017-06-09 13:30:54 +0000 [info]: gem 2017-06-09 13:30:54 +0000 [info]:

'fluentd' version '0.12.14' listening fluent socket on 0.0.0.0:24224
2017-06-09 13:30:54 +0000 [info]: adding Now, open another terminal and use fluent-cat
match pattern="debug.**" type="stdout" command to send our message to fluentd. Command
fluent-cat is useful for debugging and testing if our

2017-06-09 13:30:54 +0000 [info]: adding configuration or fluentd is running well.
source type="forward"

$ echo '{"message":"hello"}' | sudo
2017-06-09 13:30:54 +0000 [info]: adding /usr/local/bin/fluent-cat --host <your ip>
source type="monitor agent" --port 24224 debug

2017-06-09 13:30:54 +0000 [info]: adding Remember to change <your_ip> with your ip address.

source type="syslog" After executing the command, a “hello” message will be

, , displayed in fluentd. The rest is shown below.
2017-06-09 13:30:54 +0000 [info]: using

configuration file: <ROOT> 2017-06-09 13:30:54 +0000 [info]:

listening fluent socket on 0.0.0.0:24224
<source>

2017-06-09 13:33:34 +0000 debug:

@type forward {"message":"hello"}

24224 .
port That is all. If you want to analyze the log, you can add
</source> ElasticSearch and Kibana for advanced analytics.
<source> Conclusions

@type monitor agent

Using fluentd allows developers, data analysts or system

administrators to utilize the logs as they are generated.
Logs are important but in some entries, we want our logs
not giving false information or bad interpretation. As logs
quickly iterate, we can make our data better and easier
to manage in the future.

bind 0.0.0.0

port 24220

</source>

<source>

@type syslog

port 5140
bind 0.0.0.0 About the Author
tag system Andrey Ferriyan is a writer, researcher and practitioner. He is
among the Python and R enthusiasts. His experience is in
with priority true UNIX-like servers (GNU/Linux, FreeBSD and OpenBSD). Being a
Data Scientist wannabe, his area of interests includ