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Preface

I’ll tip my hat to the new constitution

Take a bow for the new revolution

Smile and grin at the change all around

Pick up my guitar and play

Just like yesterday

Then I’ll get on my knees and pray

We don’t get fooled again

– The Who

This document is intended as an up-to-date description on the fundamental con-

cepts related to the anykernel and rump kernels. It is based on the dissertation

written in 2011 and early 2012: Flexible Operating System Internals: The Design

and Implementation of the Anykernel and Rump Kernels.

The major change with rump kernels since the first edition is a shift in focus and

motivation. In work leading up to the first edition, rump kernels were about running

kernel components in userspace. That work defined the core architecture, and that

definition is still valid and accurate. Since then, work has focused on harnessing the

potential of rump kernels for building entirely new computation stacks.

Since this edition of the book is no longer an academic document, we do not support

every statement we make with a citation or experiment. In fact, we also take the

liberty to present opinions which are open for debate.
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1 Introduction

The mission of the first edition of this book (2012) was to introduce the anykernel

and rump kernels and motivate their existence. Additionally, we explored the char-

acteristics of the technology through various experiments. The paramount, often

criminally overlooked experiment was the one hiding in plain sight: is it possi-

ble to construct the system in a sustainable, real-world compatible fashion. That

paramount experiment was shown to be a success, and that result has not changed

since the original publication, only strengthened. The core technology is still almost

identical to the one described in the original book.

This new edition has been written to account for the practical experiences from new

use cases, many of which were proposed in the first edition, but which have since

become reality.

To start off, we will look at operating systems in general: what one is, how they

developed throughout history, where they are now, what the problem is, and why

the time is now ripe for change. After that, we will briefly introduce the Anykernel

and Rump Kernels, and argue why they are part of the solution to the problem.

1.1 Operating Systems

The term operating system originally meant a system which aids computer operators

in loading tapes and punchcards onto the computer [15]. We take a slightly more

modern approach, and define an operating system as a collection of subroutines

which allow application programs to run on a given platform. The platform can be

for example a physical unit of hardware, or be virtually provisioned such as on the

cloud. Additionally, an operating system may, for example, multiplex the platform
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for a number of applications, protect applications from each other, be distributed

in nature, or provide an interface which is visually appealing to some people.

The majority of the operating system is made up of drivers, which abstract some

underlying entity. For example, device drivers know which device registers to read

and write for the desired result, file system drivers know which blocks contain which

parts of which files, and so forth. In essence, a driver is a protocol translator, which

transforms requests and responses to different representations.

There is nothing about protocol translation which dictates that a driver must be an

integral part of an operating system as opposed to being part of application code.

However, operating system drivers may also be used as a tool for imposing protection

boundaries. For example, an operating system may require that applications access

a storage device through the file system driver. The file system can then enforce

that users are reading or writing only the storage blocks that they are supposed to

have access to. As we shall see shortly, imposing privilege boundaries grew out of

historic necessity when computers were few and the operating system was a tool to

multiplex a single machine for many users.

1.1.1 Historical Perspective

Computers were expensive in the 1950’s and 1960’s. For example, the cost of the

UNIVAC I in 1951 was just short of a million dollars. Accounting for inflation, that

is approximately 9 million dollars in today’s money. Since it was desirable to keep

expensive machines doing something besides idling, batch scheduling was used to

feed new computations and keep idletime to a minimum.

As most of us intuitively know, reaching the solution of a problem is easier if you are

allowed to stumble around with constant feedback, as compared to a situation where
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you must have holistic clairvoyance over the entire scenario before you even start.

The lack of near-instant feedback was a problem with batch systems. You submitted

a job, context switched to something else, came back the next day, context switched

back to your computation, and discovered your program was missing a comma.

To address the feedback problem, timesharing was invented. Users logged into a

machine via a terminal and got the illusion of having the whole system to themselves.

The timesharing operating system juggled between users and programs. Thereby,

poetic justice was administered: the computer was now the one context-switching,

not the human. Going from running one program at a time to running multiple at

the “same” time required more complex control infrastructure. The system had to

deal with issues such as hauling programs in and out of memory depending on if

they were running or not (swapping), scheduling the tasks according to some notion

of fairness, and providing users with private, permanent storage (file system). In

other words, 50 years ago they had the key concepts of current operating systems

figured out. What has happened since?

1.1.2 And Where It Got Us

The early timesharing systems isolated users from other users. The average general

purpose operating system still does a decent job at isolating users from each other.

However, that type of isolation does little good in a world which does not revolve

around people logging into a timesharing system. The increasing problem is isolating

the user from herself or himself. Ages ago, when you yourself wrote all of the

programs you ran, or at least had a physical interaction possibility with the people

who did, you could be reasonably certain that a program you ran did not try to

steal your credit card numbers. These days, when you download a million lines of

so-so trusted application code from the Internet, you have no idea of what happens

when you run it on a traditional operating system.
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The timesharing system also isolates the system and hardware components from

the unprivileged user. In this age when everyone has their own hardware — virtual

if not physical — that isolation vector is of questionable value. It is no longer a

catastrophe if an unprivileged process binds to transport layer ports less than 1024.

Everyone should consider reading and writing the network medium unlimited due

to hardware no longer costing a million, regardless of what the operating system

on some system does. The case for separate system and user software components

is therefore no longer universal. Furthermore, the abstract interfaces which hide

underlying power, especially that of modern I/O hardware, are insufficient for high-

performance computing [45].

In other words, since the operating system does not protect the user from evil or

provide powerful abstractions, it fails its mission in the modern world. Why do we

keep on using such systems? Let us imagine the world of computing as a shape

sorter. In the beginning, all holes were square: all computation was done on a

million dollar machine sitting inside of a mountain. Square pegs were devised to fit

the square holes, as one would logically expect. The advent of timesharing brought

better square pegs, but it did so in the confines of the old scenario of the mountain-

machine. Then the world of computing diversified. We got personal computing,

we got mobile devices, we got IoT, we got the cloud. Suddenly, we had round

holes, triangular holes and the occasional trapezoid and rhombus. Yet, we are still

fascinated by square-shaped pegs, and desperately try to cram them into every hole,

regardless of if they fit or not.

Why are we so fascinated with square-shaped pegs? What happens if we throw

away the entire operating system? The first problem with that approach is, and it

is a literal show-stopper, that applications will fail to run. Already in the late 1940’s

computations used subroutine libraries [8]. The use of subroutine libraries has not

diminished in the past 70 years, quite to the contrary. An incredible amount of

application software keeping the Internet and the world running has been written
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against the POSIX-y interfaces offered by a selection of operating systems. No

matter how much you do not need the obsolete features provided by the square peg

operating system, you do want to keep your applications working.

From-scratch implementations of the services provided by operating systems are far

from trivial undertakings. Just implementing the 20-or-so flags for the open() call

in a real-world-bug-compatible way is far from trivial. Assuming you want to run

an existing libc/application stack, you have to keep in mind that you still have

roughly 199 system calls to go after open(). After you are done with the system

calls, you then have to implement the actual components that the system calls act

as an interface to: networking, file systems, device drivers, and various other driver

stacks.

After the completing the above steps for a from-scratch implementation, the most

time-consuming part remains: testing your implementation in the real world and

fixing it to work there. This step is also the most difficult one, since no amount

of conformance to formal specification or testing in a laboratory is a substitute for

being “bug-compatible” with the real world.

So in essence, we are fascinated by square-shaped pegs because our applications rest

on the support provided by those pegs. That is why we are stuck in a rut and few

remember to look at the map.

1.1.3 What We Really Need

We want applications to run. We need the operating system to adapt to the sce-

nario the application is deployed in, not for the application to adapt to a 1950’s

understanding of computing and hardware cost.
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Let us consider embedded systems. Your system consists of one trust-domain on

one piece of hardware. There, you simply need at set of subroutines (drivers) to

enable your application to run. You do not need any code which allows the single-

user, single-application system to act like a timesharing system with multiple users.

However, for example the implementation of the TCP/IP driver can, assuming you

do not want to scale to kilobyte-sized system or to the bleeding edge of performance,

be the same as one for a multiuser system. After all, the TCP/IP protocols are

standard, and therefore the protocol translation the driver needs to perform is also

standard.

Let us consider the cloud and especially microservices running on the cloud. We can

indeed run the services on top of a timesharing operating system, A paravirtualized

timesharing OS takes time to bootstrap [26] and consumes resources even for the

features which are not used by the microservice. OS virtualization via containers [27]

provides better performance and resource consumption than paravirtualization [53,

57], but at the cost of putting millions of lines of code into the trusted computing

base.

Using timesharing systems en masse will allow applications to run in both cases,

but not adapting to the scenario comes with a price. In effect, tradeoffs are made

either for performance or security.

1.2 The Anykernel and Rump Kernels

This work is about how to move from the world of timesharing systems to the world

of the future in a fashion in which applications continue to function. The two key

terms are anykernel and rump kernel, both of which we will introduce and describe

shortly.
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Applications need subroutines to work, and those subroutines are provided by op-

erating systems. We call those subroutines drivers, and state that not only does

a typical application require a large set of drivers, but also that those drivers are

also non-trivial to write and maintain. While operating systems built around a

timesharing model are rich in drivers due to having a lot of history behind them,

they are not sufficient for the use cases required by the modern world. We need

to start treating drivers as library-like components instead of requiring a separate

implementation for each operating system. The library-approach will allow to build

the software stack to suit the scenario, instead of having to build the scenario to

suit the available operating systems.

The term anykernel was coined in response to the ever-increasing number of operat-

ing system models: monolithic kernel, microkernel, exokernel, multikernel, uniker-

nel, etc. As the saying goes, creating something new is is 5% inspiration and 95%

perspiration. While the inspiration required to come up with a new model should

not be undervalued, after that 95% of the work for reaching a usable software stack

remains. That 95% consists largely of the drivers. For example, even the most triv-

ial cloud operating system requires a TCP/IP driver, and creating one from scratch

or even porting one is far from trivial. The anykernel is a term describing a kernel-

type codebase from which drivers, the 95%, can be extracted and integrated to any

operating system model — or at least near any — without porting and maintenance

work.

A rump kernel, as the name implies, is a timesharing style kernel from which por-

tions have been removed. What remains are drivers and the basic support routines

required for the drivers to function – synchronization, memory allocators, and so

forth. What is gone are policies of thread scheduling, virtual memory, application

processes, and so forth. Rump kernels have a well-defined (and small!) portability

layer, so they are straightforward to integrate into various environments.
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Figure 1.1: Relationship between key concepts: The anykernel allows driver
components to be lifted out of the original source tree and rump kernels to be formed
out of those drivers. Rump kernels can be used to build products and platforms;
one example of a use case is illustrated.

Figure 1.1 illustrates how a timesharing system, anykernel and rump kernel are

related. The figure indeed illustrates only one example, and by extension, only one

example platform for hosting rump kernels.

Throughout most of the technical discussion in this book we will consider a userspace

program as the platform for hosting a rump kernel. There are two reasons why it

is so. First, the original motivation for rump kernels back in 2007 was developing,

debugging and testing kernel drivers. What better place to do it than in userspace?

Second, userspace is in itself a “hosted” platform, and we do not have full control of

for example the symbol namespace or the scheduler. Therefore, if rump kernels can

work in userspace, they can also easily work on platforms which are custom-built to

host rump kernels.

The implementation we discuss is available in NetBSD. It is crucial to differentiate

between the implementation being in NetBSD, and it being available as patches for

NetBSD. The idea of the anykernel is that it is an inherent property of a code base,

so as to keep things maintained. What, in fact, keeps the implementation working
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is NetBSD’s internal use of rump kernels for testing kernel drivers. This testing also

allows NetBSD to provide better quality drivers, so there is clear synergy. However,

we will not focus on the testing aspects in this book; if curious, see the first edition

for more discussion on development and testing.

1.3 Book Outline

The remainder of the book is as follows. Chapter 2 defines the concept of the

anykernel and rump kernels and Chapter 3 discusses the implementation and pro-

vides microbenchmarks as supporting evidence for implementation decisions. Es-

sentially, the two previous chapters are a two-pass flight over the core subject. The

intent is to give the reader a soft landing by first introducing the new concept in

abstract terms, and then doing the same in terms of the implementation. That way,

we can include discussion of worthwhile implementation details without confusing

the high-level picture. If something is not clear from either chapter alone, the rec-

ommendation is to study the relevant text from the other one. If you read the first

edition of this book, you may choose to only lightly skim these two chapters; the

main ideas are the same as in the first edition.

Chapter 4 gives an overview of what we have built on top of rump kernels. A

brief history of the project is presented in Chapter 5. The history chapter can be

read first, last, or anywhere in between, or not at all. Finally, Chapter 6 provides

concluding remarks.

What this book is not

This book is not a user manual. You will not learn how to use rump kernels in

day-to-day operations from this book. However, you will gain a deep understanding
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of rump kernels which, when coupled with the user documentation, will give you

superior knowledge of how to use rump kernels. Most of the user documentation is

available as a wiki at http://wiki.rumpkernel.org/.

1.4 Further Material

In general, further material is reachable from the rump kernel project website at

http://rumpkernel.org/.

1.4.1 Source Code

The NetBSD source files and their respective development histories are available for

study from repository provided by the NetBSD project, e.g. via the web interface at

cvsweb.NetBSD.org. These files are most relevant for the discussion in Chapter 2

and Chapter 3.

The easiest way to fetch the latest NetBSD source code in bulk is to run the following

commands (see Section 4.1.4 for further information):

git clone http://repo.rumpkernel.org/src-netbsd

cd src-netbsd

git checkout all-src

Additionally, there is infrastructure to support building rump kernels for various

platforms hosted at http://repo.rumpkernel.org/. The discussion in Chapter 4

is mostly centered around source code available from that location.

http://wiki.rumpkernel.org/
http://rumpkernel.org/
http://repo.rumpkernel.org/
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Code examples

This book includes code examples from the NetBSD source tree. All such examples

are copyright of their respective owners and are not public domain. If pertinent,

please check the full source for further information about the licensing and copyright

of each such example.

1.4.2 Manual Pages

Various manual pages are cited in the document. They are available as part of the

NetBSD distribution, or via the web interface at http://man.NetBSD.org/.

http://man.NetBSD.org/
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2 Concepts: Anykernel and Rump Kernels

As a primer for the technical discussion in this book, we consider the elements that

make up a modern Unix-style operating system. Commonly, the operating system

is cleft in twain with the kernel providing basic support, and userspace being where

applications run. Since this chapter is about the anykernel and rump kernels, we

limit the following discussion to the kernel.

The CPU specific code is on the bottom layer of the operating system. This code

takes care of low level bootstrap and provides an abstract interface to the hardware.

In most, if not all, modern general purpose operating systems the CPU architecture

is abstracted away from the bulk of the kernel and only the lowest layers have

knowledge of it. To put the previous statement into terms which are used in our

later discussions, the interfaces provided by the CPU specific code are the“hypercall”

interfaces that the OS runs on. In the NetBSD kernel these functions are usually

prefixed with “cpu”.

The virtual memory subsystem manages the virtual address space of the kernel and

application processes. Virtual memory management includes defining what happens

when a memory address is accessed. Examples include normal read/write access to

the memory, flagging a segmentation violation, or a file being read from the file

system.

The process execution subsystem understands the formats that executable binaries

use and knows how to create a new process when an executable is run.

The scheduling code includes a method and policy to define what code a CPU is

executing. Scheduling can be cooperative or preemptive. Cooperative scheduling

means that the currently running thread decides when to yield — sometimes this
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decision is implicit, e.g. waiting for I/O to complete. Preemptive scheduling means

that also the scheduler can decide to unschedule the current thread and schedule a

new one, typically because the current thread exceeded its allotted share of CPU

time. When a thread is switched, the scheduler calls the CPU specific code to save

the machine context of the current thread and load the context of the new thread.

NetBSD uses preemptive scheduling both in userspace and in the kernel.

Atomic operations enable modifying memory atomically and avoid race conditions in

for example a read-modify-write cycle. For uniprocessor architectures, kernel atomic

operations are a matter of disabling interrupts and preemption for the duration of

the operation. Multiprocessor architectures provide machine instructions for atomic

operations. The operating system’s role with atomic operations is mapping function

interfaces to the way atomic operations are implemented on that particular machine

architecture.

Synchronization routines such as mutexes and condition variables build upon atomic

operations and interface with the scheduler. For example, if locking a mutex is at-

tempted, the condition for it being free is atomically tested and set. If a sleep mutex

was already locked, the currently executing thread interfaces with the scheduling

code to arrange for itself to be put to sleep until the mutex is released.

Various support interfaces such CPU cross-call, time-related routines, kernel linkers,

etc. provide a basis on which to build drivers.

Resource management includes general purpose memory allocation, a pool and

slab [7] allocator, file descriptors, PID namespace, vmem/extent resource alloca-

tors etc. Notably, in addition to generic resources such as memory, there are more

specific resources to manage. Examples of more specific resources include vnodes [30]

for file systems and mbufs [58] for the TCP/IP stack.
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Drivers deal with translating various protocols such as file system images, hardware

devices, network packets, etc. Drivers are what we are ultimately interested in

using in rump kernels, but to make them available we must deal with everything

they depend on. We will touch this subject more in the next section.

2.1 Driving Drivers

To run drivers without having to run the entire timesharing OS kernel, in essence

we have to provide semantically equivalent implementations of the support routines

that the drivers use. The straightforward way indeed is to run the entire kernel,

but it is not the optimal approach, as we argued in the introduction. The key is to

figure out what to reuse verbatim and what needs rethinking.

2.1.1 Relegation and Reuse

There are essentially two problems to solve. One is coming up with an architecture

which allows rump kernels to maximally integrate with the underlying platform. The

second one is figuring out how to satisfy the closure of the set of support routines

used by desirable drivers. Those two problems are in fact related. We will clarify in

the following.

The key to drivers being able to adapt to situations is to allow them to use the

features of the underlying world directly. For example, drivers need a memory

address space to execute in; we use the underlying one instead of simulating a second

one on top of it. Likewise, we directly use the threading and scheduling facilities in

our rump kernel instead of having the scheduling a virtual kernel with its own layer

of scheduling. Relegating support functionality to the host avoids adding a layer of

indirection and overhead.
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Rump kernels are never full kernels which can independently run directly on bare

metal, and always need lower layer support from the host. This layer can be a

spartan, specially-constructed one consisting of some thousands of lines of code,

or an extremely complex such as a current generation general purpose operating

system.

Drivers in a rump kernel remain unmodified over the original ones. A large part of

the support routines remain unmodified as well. Only in places where support is

relegated to the host do we require specifically written glue code. As was indicated

already in the introductory chapter, we use the term anykernel to describe a kernel

code base with the property of being able use unmodified drivers and the relevant

support routines in rump kernels.

It should be noted that unlike for example the terms microkernel or unikernel, the

term anykernel does not convey information about how the drivers are organized at

runtime, but rather that it is possible to organize them in a number of ways.

We examine the implementation details of an anykernel more closely in Chapter 3

where we turn the NetBSD kernel into an anykernel.

2.1.2 Base, Orthogonal Factions, Drivers

A monolithic kernel, as the name implies, is one single entity. The runtime footprint

of a monolithic kernel contains support functionality for all subsystems, such as

sockets for networking, vnodes for file systems and device autoconfiguration for

drivers. All of these facilities cost resources, especially memory, even if they are not

used. They may also impose dependencies on the underlying platform, e.g. MMU

for some aspects of virtual memory support.
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Figure 2.1: Rump kernel hierarchy. The desired drivers dictate the required
components. The factions are orthogonal and depend only on the rump kernel base.
The rump kernel base depends purely on the hypercall layer.

We have divided a rump kernel, and therefore the underlying NetBSD kernel code-

base, into three layers which are illustrated in Figure 2.1: the base, factions and

drivers. The base contains basic support such as memory allocation and locking.

The dev, net and vfs factions, which denote devices, networking and [virtual] file sys-

tems, respectively, provide subsystem level support. To minimize runtime resource

consumption, we require that factions are orthogonal. By orthogonal we mean that

the code in one faction must be able to operate irrespective if any other faction is

present in the rump kernel configuration or not. Also, the base may not depend

on any faction, as that would mean the inclusion of a faction in a rump kernel is

mandatory instead of optional.

We use the term component to describe a functional unit for a rump kernel. For

example, a file system driver is a component. A rump kernel is constructed by linking

together the desired set of components, either at compile-time or at run-time. A
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loose similarity exists between kernel modules and the rump kernel approach: code

is compiled once per target architecture, and a linker is used to determine runtime

features. For a given driver to function properly, the rump kernel must be linked with

the right set of dependencies. For example, the NFS component requires both the

file system and networking factions, but in contrast the tmpfs component requires

only the file system faction.

User interfaces are used by applications to request services from rump kernels. Any

dependencies induced by user interfaces are optional, as we will illustrate next. Con-

sider Unix-style device driver access. Access is most commonly done through file

system nodes in /dev, with the relevant user interfaces being open and read/write

(some exceptions to the file system rule exist, such as Bluetooth and Ethernet inter-

faces which are accessed via sockets on NetBSD). To access a /dev file system node

in a rump kernel, file systems must be supported. Despite file system access being

the standard way to access a device, it is possible to architect an application where

the device interfaces are called directly without going through file system code. Do-

ing so means skipping the permission checks offered by file systems, calling private

kernel interfaces and generally having to write more fragile code. Therefore, it is not

recommended as the default approach, but if need be due to resource limitations, it

is a possibility. For example, let us assume we have a rump kernel running a TCP/IP

stack and we wish to use the BSD Packet Filter (BPF) [34]. Access through /dev

is presented in Figure 2.2, while direct BPF access which does not use file system

user interfaces is presented in Figure 2.3. You will notice the first example is similar

to a regular application, while the latter is more complex. We will continue to refer

to these examples in this chapter when we go over other concepts related to rump

kernels.

The faction divisions allow cutting down several hundred kilobytes of memory over-

head and milliseconds in startup time per instance. While the saving per instance

is not dramatic, the overall savings are sizeable in scenarios such as IoT, network
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testing [24], or cloud services, which demand thousands of instances. For example,

a rump kernel TCP/IP stack without file system support is 40% smaller (400kB)

than one which contains file system support.

2.1.3 Hosting

To function properly, a rump kernel must access certain underlying resources such

as memory and the scheduler. These resources are accessed through the rumpuser

hypercall interface. We will analyze and describe this interface in detail in Sec-

tion 3.2.3. We call the underlying platform-specific software layer the host ; the

hypercalls are implemented on top of the host.

Notably, as we already hinted earlier, the platform requirements for a rump ker-

nel are extremely minimal, and a rump kernel can run virtually everywhere. For

example, there is no need to run the rump kernel in privileged hardware mode. Ul-

timately, the host has full control and fine-grained control of what a rump kernel

has access to.

2.2 Rump Kernel Clients

We define a rump kernel client to be an entity which requests services from a rump

kernel. Examples of rump kernel clients are userspace applications which access the

network through a TCP/IP stack provided by a rump kernel, userspace applications

which read files via a file system driver provided by a rump kernel, or simply any

application running on the Rumprun unikernel (Section 4.2). Likewise, a test pro-

gram that is used to test kernel code by means of running it in a rump kernel is a

rump kernel client.
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int

main(int argc, char *argv[])

{

struct ifreq ifr;

int fd;

/* bootstrap rump kernel */

rump_init();

/* open bpf device, fd is in implicit process */

if ((fd = rump_sys_open(_PATH_BPF, O_RDWR, 0)) == -1)

err(1, "bpf open");

/* create virt0 in the rump kernel the easy way and set bpf to use it */

rump_pub_virtif_create(0);

strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));

if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)

err(1, "set if");

/* rest of the application */

[....]

}

Figure 2.2: BPF access via the file system. This figure demonstrates the
system call style programming interface of a rump kernel.
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int rumpns_bpfopen(dev_t, int, int, struct lwp *);

int

main(int argc, char *argv[])

{

struct ifreq ifr;

struct lwp *mylwp;

int fd, error;

/* bootstrap rump kernel */

rump_init();

/* create an explicit rump kernel process context */

rump_pub_lwproc_rfork(RUMP_RFCFDG);

mylwp = rump_pub_lwproc_curlwp();

/* schedule rump kernel CPU */

rump_schedule();

/* open bpf device */

error = rumpns_bpfopen(0, FREAD|FWRITE, 0, mylwp);

if (mylwp->l_dupfd < 0) {

rump_unschedule();

errx(1, "open failed");

}

/* need to jump through a hoop due to bpf being a "cloning" device */

error = rumpns_fd_dupopen(mylwp->l_dupfd, &fd, 0, error);

rump_unschedule();

if (error)

errx(1, "dup failed");

/* create virt0 in the rump kernel the easy way and set bpf to use it */

rump_pub_virtif_create(0);

strlcpy(ifr.ifr_name, "virt0", sizeof(ifr.ifr_name));

if (rump_sys_ioctl(fd, BIOCSETIF, &ifr) == -1)

err(1, "set if");

/* rest of the application */

[....]

}

Figure 2.3: BPF access without a file system. This figure demonstrates the
ability to directly call arbitrary kernel routines from a user program. For comparison,
it implements the same functionality as Figure 2.2. This ability is most useful for
writing kernel unit tests when the calls to the unit under test cannot be directly
invoked by using the standard system call interfaces.
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Figure 2.4: Client types illustrated. For local clients the client and rump kernel
reside in a single process, while remote and microkernel clients reside in separate
processes and therefore do not have direct memory access into the rump kernel.

The relationship between a rump kernel and a rump kernel client is an almost direct

analogy to an application process executing on an operating system and requesting

services from the host kernel.

There are several possible relationship types the client and rump kernel can have.

Each of them have different implications on the client and kernel. The possibilities

are: local, remote and microkernel. The configurations are also depicted in Fig-

ure 2.4. The implications of each are available in summarized form in Table 2.1.

Next, we will discuss the configurations and explain the table.

• Local clients exist in the same application process as the rump kernel itself.

They have full access to the rump kernel’s address space, and make requests

via function calls directly into the rump kernel. Typically requests are done

via established interfaces such as the rump kernel syscall interface, but there

is nothing preventing the client from jumping to any routine inside the rump

kernel.

The benefits of local clients include speed and compactness. Speed is due to

a rump kernel request being essentially a function call. A null rump kernel



43

Type Request Policy Access Available Interface

local client full all

remote client limited system call

microkernel host kernel limited depends on service

Table 2.1: Comparison of client types. Local clients get full access to a rump
kernel, but require explicit calls in the program code. Remote clients have stan-
dard system call access with security control and can use unmodified binaries. In
microkernel mode, the rump kernel is run as a microkernel style system server with
requests routed by the host kernel.

system call is twice as fast as a native system call. Compactness results from

the fact that there is only a single program and can make managing the whole

easier. The drawback is that the single program must configure the kernel to a

suitable state before the application can act. Examples of configuration tasks

include adding routing tables (the route utility) and mounting file systems

(the mount utility). Since existing configuration tools are built around the

concept of executing different configuration steps as multiple invocations of

the tool, adaptation of the configuration code may not always be simple.

Local clients do not have meaningful semantics for a host fork() call. This

lack of semantics is because the rump kernel state would be duplicated and

could result in for example two kernels accessing the same file system or

having the same IP address.

A typical example of a local client is an application which uses the rump

kernel as a programming library e.g. to access a file system.

• Remote clients use a rump kernel which resides elsewhere, either in a differ-

ent address space on the local host or on a remote one. The request routing

policy is up to the client. The policy locus is an implementation decision, not

a design decision, and alternative implementations can be considered [20] if

it is important to have the request routing policy outside of the client.
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Since the client and kernel are separated, kernel side access control is fully

enforced — if the client and rump kernel are on the same host, we assume

that the host enforces separation between the respective processes. This

separation means that a remote client will not be able to access resources

except where the rump kernel lets it, and neither will it be able to dictate

the thread and process context in which requests are executed. The client

not being able to access arbitrary kernel resources in turn means that real

security models are possible, and that different clients may have varying levels

of privileges.

By default, we provide support for remote clients which communicate with a

rump kernel using host local domain sockets or TCP sockets. Using sockets

is not the only option on general purpose operating systems, and for example

the ptrace() facility can also be used to implement remote clients [16, 20].

Also, we know that the protocol can be implemented over various media in

non-POSIX environments, e.g. over a hardware bus.

Remote clients are not as performant as local clients due to IPC overhead.

However, since multiple remote clients can run against a single rump ker-

nel, they lead to more straightforward use of existing code and even that of

unmodified binaries. Such binaries can be useful to configure and inspect a

rump kernel (e.g. ifconfig). We discuss these binaries and their advantages

further in Section 3.12 and Section 4.3.

Remote clients, unlike local clients, have meaningful semantics for fork()

since both the host kernel context and rump kernel contexts can be correctly

preserved: the host fork() duplicates only the client and not the rump ker-

nel. Of course, this statement applies only to hosts which support a fork()

call.

• Microkernel client requests are routed by the host kernel to a separate

server which handles the requests using a driver in a rump kernel. While

microkernel clients can be seen to be remote clients, the key difference to



45

remote clients is that the request routing policy is in the host kernel instead

of in the client. Furthermore, the interface used to access the rump kernel is

below the system call layer. We implemented microkernel callbacks for file

systems (puffs [28]) and character/block device drivers (pud [43]). They use

the NetBSD kernel VFS/vnode and cdev/bdev interfaces to access the rump

kernel, respectively.

It needs to be noted that rump kernels accepting multiple different types of clients

are possible. For example, remote clients can be used to configure a rump kernel,

while the application logic still remains in the local client. The ability to use multiple

types of clients on a single rump kernel makes it possible to reuse existing tools for

the configuration job and still reap the speed benefit of a local client.

Rump kernels used by remote or microkernel clients always include a local client as

part of the process the rump kernel is hosted in. This local client is responsible for

forwarding incoming requests to the rump kernel, and sending the results back after

the request has been processed.

2.3 Threads and Schedulers

Next, we will discuss the theory and concepts related to processes, threads, CPUs,

scheduling and interrupts in a rump kernel. An example scenario is presented after

the theory in Section 2.3.4. This subject is revisited in Section 3.3 where we discuss

it from a more concrete perspective along with the implementation.

As stated earlier, a rump kernel uses the host’s thread and scheduling facilities. To

understand why we still need to discuss this topic, let us first consider what a thread

represents to an operating system. First, a thread represents machine execution
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context, such as the program counter, other registers and the virtual memory address

space. We call this machine context the hard context. It determines how machine

instructions will be executed when a thread is running on a CPU and what their

effects will be. The hard context is determined by the platform that the thread runs

on. Second, a thread represents all auxiliary data required by the operating system.

We call this auxiliary data the soft context. It comprises for example of information

determining which process a thread belongs to, and e.g. therefore what credentials

and file descriptors it has. The soft context is determined by the operating system.

To further illustrate, we go over a simplified version of what happens on NetBSD

when an application process creates a thread:

1. The application calls pthread_create() and passes in the necessary param-

eters, including the address of the new thread’s start routine.

2. The pthread library does the necessary initialization, including stack alloca-

tion. It creates a hard context by calling _lwp_makecontext() and passing

the start routine’s address as an argument. The pthread library then invokes

the _lwp_create() system call.

3. The host kernel creates the kernel soft context for the new thread and the

thread is put into the run queue.

4. The newly created thread will be scheduled and begin execution at some

point in the future.

A rump kernel uses host threads for the hard context. Local client threads which

call a rump kernel are created as described above. Since host thread creation does

not involve the rump kernel, a host thread does not get an associated rump kernel

thread soft context upon creation.
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Nonetheless, a unique rump kernel soft context must exist for each thread executing

within the rump kernel because the code we wish to run relies on it. For example,

code dealing with file descriptors accesses the relevant data structure by dereferenc-

ing curlwp->l_fd 1. The soft context determines the value of curlwp.

We must solve the lack of a rump kernel soft context resulting from the use of host

threads. Whenever a host thread makes a function call into the rump kernel, an en-

try point wrapper must be called. Conversely, when the rump kernel routine returns

to the client, an exit point wrapper is called. These calls are done automatically

for official interfaces, and must be done manually in other cases — compare Fig-

ure 2.2 and Figure 2.3 and see that the latter includes calls to rump_schedule()

and rump_unschedule(). The wrappers check the host’s thread local storage (TLS)

to see if there is a rump kernel soft context associated with the host thread. The

soft context may either be set or not set. We discuss both cases in the following

paragraphs.

1. implicit threads: the soft context is not set in TLS. A soft context will be

created dynamically and is called an implicit thread. Conversely, the implicit

thread will be released at the exit point. Implicit threads are always attached

to the same rump kernel process context, so callers performing multiple calls,

e.g. opening a file and reading from the resulting file descriptor, will see

expected results. The rump kernel thread context will be different as the

previous one no longer exists when the next call is made. A different context

does not matter, as the kernel thread context is not exposed to userspace

through any portable interfaces — that would not make sense for systems

which implement a threading model where userspace threads are multiplexed

on top of kernel provided threads [2].

1 curlwp is not variable in the C language sense. It is a platform-specific macro which produces
a pointer to the currently executing thread’s kernel soft context. Furthermore, since file descrip-
tors are a process concept instead of a thread concept, it would be more logical to access them
via curlwp->l_proc->p_fd. This commonly referenced pointer is cached directly in the thread
structure as an optimization to avoid indirection.
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2. bound threads: the soft context is set in TLS. The rump kernel soft context

in the host thread’s TLS can be set, changed and disbanded using interfaces

further described in the manual page rump lwproc.3. We call a thread with

the rump kernel soft context set a bound thread. All calls to the rump kernel

made from a host thread with a bound thread will be executed with the same

rump kernel soft context.

The soft context is always set by a local client. Microkernel and remote clients are

not able to directly influence their rump kernel thread and process context. Their

rump kernel context is set by the local client which receives the request and makes

the local call into the rump kernel.

Discussion

There are alternative approaches to implicit threads. It would be possible to re-

quire all local host threads to register with the rump kernel before making calls.

The registration would create essentially a bound thread. There are two reasons

why this approach was not chosen. First, it increases the inconvenience factor for

casual users, e.g. in kernel testing use cases, as now a separate call per host thread

is needed. Second, some mechanism like implicit threads must be implemented any-

way: allocating a rump kernel thread context requires a rump kernel context for

example to be able to allocate memory for the data structures. Our implicit thread

implementation doubles as a bootstrap context.

Implicit contexts are created dynamically because because any preconfigured reason-

able amount of contexts risks application deadlock. For example, n implicit threads

can be waiting inside the rump kernel for an event which is supposed to be deliv-

ered by the n + 1’th implicit thread, but only n implicit threads were precreated.

Creating an amount which will never be reached (e.g. 10,000) may avoid deadlock,
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but is wasteful. Additionally, we assume all users aiming for high performance will

use bound threads.

Notably, in some rump kernel use cases where rump kernel and host threads are

always 1:1-mapped, such as with the Rumprun unikernel, all threads are established

as bound threads transparently to the applications. However, the implicit thread

mechanism is still used to bootstrap the contexts for those threads.

2.3.1 Kernel threads

Up until now, we have discussed the rump kernel context of threads which are

created by the client, e.g. by calling pthread_create() on a POSIX host. In

addition, kernel threads exist. The creation of a kernel thread is initiated by the

kernel and the entry point lies within the kernel. Therefore, a kernel thread always

executes within the kernel except when it makes a hypercall. Kernel threads are

associated with process 0 (struct proc0). An example of a kernel thread is the

workqueue worker thread, which the workqueue kernel subsystem uses to schedule

and execute asynchronous work units.

On a regular system, both an application process thread and a kernel thread have

their hard context created by the kernel. As we mentioned before, a rump kernel

cannot create a hard context. Therefore, whenever kernel thread creation is re-

quested, the rump kernel creates the soft context and uses a hypercall to request

the hard context from the host. The entry point given to the hypercall is a bouncer

routine inside the rump kernel. The bouncer first associates the kernel thread’s soft

context with the newly created host thread and then proceeds to call the thread’s

actual entry point.
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2.3.2 A CPU for a Thread

First, let us use broad terms to describe how scheduling works in regular virtualized

setup. The hypervisor has an idle CPU it wants to schedule work onto and it

schedules a guest system. While the guest system is running, the guest system

decides which guest threads to run and when to run them using the guest system’s

scheduler. This means that there are two layers of schedulers involved in scheduling

a guest thread.

We also point out that a guest CPU can be a purely virtual entity, e.g. the guest may

support multiplexing a number of virtual CPUs on top of one host CPU. Similarly,

the rump kernel may be configured to provide any number of CPUs that the guest

OS supports regardless of the number of CPUs present on the host. The default

for a rump kernel is to provide the same number of virtual CPUs as the number

of physical CPUs on the host. Then, a rump kernel can fully utilize all the host’s

CPUs, but will not waste resources on virtual CPUs where the host cannot schedule

threads for them in parallel.

As a second primer for the coming discussion, we will review CPU-local algorithms.

CPU-local algorithms are used avoid slow cross-CPU locking and hardware cache

invalidation. Consider a pool-style resource allocator (e.g. memory): accessing a

global pool is avoided as far as possible because of the aforementioned reasons of

locking and cache. Instead, a CPU-local allocation cache for the pools is kept. Since

the local cache is tied to the CPU, and since there can be only one thread executing

on one CPU at a time, there is no need for locking other than disabling thread

preemption in the kernel while the local cache is being accessed. Figure 2.5 gives an

illustrative example.

The host thread doubles as the guest thread in a rump kernel and the host sched-

ules guest threads. The guest CPU is left out of the relationship. The one-to-one
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void *

pool_cache_get_paddr(pool_cache_t pc)

{

pool_cache_cpu_t *cc;

cc = pc->pc_cpus[curcpu()->ci_index];

pcg = cc->cc_current;

if (__predict_true(pcg->pcg_avail > 0)) {

/* fastpath */

object = pcg->pcg_objects[--pcg->pcg_avail].pcgo_va;

return object;

} else {

return pool_cache_get_slow();

}

}

Figure 2.5: Use of curcpu() in the pool allocator simplified as pseudocode
from sys/kern/subr_pool.c. An array of CPU-local caches is indexed by the
current CPU’s number to obtain a pointer to the CPU-local data structure. Lockless
allocation from this cache is attempted before reaching into the global pool.

relationship between the guest CPU and the guest thread must exist because CPU-

local algorithms rely on that invariant. If we remove the restriction of each rump

kernel CPU running at most one thread at a time, code written against CPU-local

algorithms will cause data structure corruption. Therefore, it is necessary to uphold

the invariant that a CPU has at most one thread executing on it at a time.

Since selection of the guest thread is handled by the host, we select the guest CPU

instead. The rump kernel virtual CPU is assigned for the thread that was selected

by the host, or more precisely that thread’s rump kernel soft context. Simplified,

scheduling in a rump kernel can be considered picking a CPU data structure off of a

freelist when a thread enters the rump kernel and returning the CPU to the freelist

once a thread exits the rump kernel. A performant implementation is more delicate

due to multiprocessor efficiency concerns. One is discussed in more detail along with

the rest of the implementation in Section 3.3.1.
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Scheduling a CPU and releasing it are handled at the rump kernel entrypoint and

exitpoint, respectively. The BPF example with VFS (Figure 2.2) relies on rump ker-

nel interfaces handling scheduling automatically for the clients. The BPF example

which calls kernel interfaces directly (Figure 2.3) schedules a CPU before it calls a

routine inside the rump kernel.

2.3.3 Interrupts and Preemption

An interrupt is an asynchronously occurring event which preempts the current

thread and proceeds to execute a compact handler for the event before return-

ing control back to the original thread. The interrupt mechanism allows the OS to

quickly acknowledge especially hardware events and schedule the required actions

for a suitable time (which may be immediately). Taking an interrupt is tied to the

concept of being able to temporarily replace the currently executing thread with the

interrupt handler. Kernel thread preemption is a related concept in that code cur-

rently executing in the kernel can be removed from the CPU and a higher priority

thread selected instead.

The rump kernel uses a cooperative scheduling model where the currently executing

thread runs to completion. There is no virtual CPU preemption, neither by inter-

rupts nor by the scheduler. A thread holds on to the rump kernel virtual CPU until

it either makes a blocking hypercall or returns from the request handler. A host

thread executing inside the rump kernel may be preempted by the host. Preemption

will leave the virtual CPU busy until the host reschedules the preempted thread and

the thread runs to completion in the rump kernel.

What would be delivered by a preempting interrupt in the monolithic kernel is

always delivered via a schedulable thread in a rump kernel. In the event that later

use cases present a strong desire for fast interrupt delivery and preemption, the
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author’s suggestion is to create dedicated virtual rump CPUs for interrupts and

real-time threads and map them to high-priority host threads. Doing so avoids

interaction with the host threads via signal handlers (or similar mechanisms on

other non-POSIX host architectures). It is also in compliance with the paradigm

that the host handles all scheduling in a rump kernel.

2.3.4 An Example

We present a clarifying example. Let us assume two host threads, A and B, which

both act as local clients. The host schedules thread A first. It makes a call into the

rump kernel requesting a bound thread. First, the soft context for an implicit thread

is created and a CPU is scheduled. The implicit thread soft context is used to create

the soft context of the bound thread. The bound thread soft context is assigned

to thread A and the call returns after free’ing the implicit thread and releasing the

CPU. Now, thread A calls the rump kernel to access a driver. Since it has a bound

thread context, only CPU scheduling is done. Thread A is running in the rump

kernel and it locks mutex M. Now, the host scheduler decides to schedule thread B

on the host CPU instead. There are two possible scenarios:

1. The rump kernel is a uniprocessor kernel and thread B will be blocked. This

is because thread A is still scheduled onto the only rump kernel CPU. Since

there is no preemption for the rump kernel context, B will be blocked until

A runs and releases the rump kernel CPU. Notably, it makes no difference if

thread B is an interrupt thread or not — the CPU will not be available until

thread A releases it.

2. The rump kernel is a multiprocessor kernel and there is a chance that other

rump kernel CPUs may be available for thread B to be scheduled on. In this

case B can run.
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We assume that B can run immediately. Thread B uses implicit threads, and there-

fore upon entering the rump kernel an implicit thread soft context gets created and

assigned to thread B, along with a rump kernel CPU.

After having received a rump kernel CPU and thread context, thread B wants to

lock mutex M. M is held, and thread B will have to block and await M’s release.

Thread B will release the rump kernel CPU and sleep until A unlocks the mutex.

After the mutex is unlocked, the host marks thread B as runnable and after B wakes

up, it will attempt to schedule a rump kernel CPU and after that attempt to lock

mutex M and continue execution. When B is done with the rump kernel call, it will

return back to the application. Before doing so, the CPU will be released and the

implicit thread context will be free’d.

Note that for thread A and thread B to run in parallel, both the host and the rump

kernel must have multiprocessor capability. If the host is uniprocessor but the rump

kernel is configured with multiple virtual CPUs, the threads can execute inside the

rump kernel concurrently. In case the rump kernel is configured with only one CPU,

the threads will execute within the rump kernel sequentially irrespective of if the

host has one or more CPUs available for the rump kernel.

2.4 Virtual Memory

Virtual memory address space management in a rump kernel (if any!) is relegated

to the host, because requiring support in a rump kernel would impose restrictions on

the platform and host. For example, emulating page faults and memory protection

in a usermode OS exhibits over tenfold performance penalty and can be significant in

other, though not all, hypervisors [3]. Virtual memory support was not seen worth

the increased implementation complexity and potentially reduced performance.



55

����
����

�	

��

�

�
�
�

�
�
�

�
���

�

����

����

���
�������

�����������



��

��
����
����

Figure 2.6: Providing memory mapping support on top of a rump ker-
nel. The file is mapped into the client’s address space by the host kernel. When
non-resident pages in the mapped range are accessed by the client, a page fault is
generated and the rump kernel is invoked via the host kernel’s file system code to
supply the desired data.

The implication of a rump kernel not implementing full memory protection is that

it does not support accessing resources via page faults. There is no support in a

rump kernel for memory mapping a file to a client. Supporting page faults inside a

rump kernel would not work for remote clients anyway, since the page faults need

to be trapped on the client machine.

However, it is possible to provide memory mapping support on top of rump kernels.

In fact, when running file systems as microkernel servers, the puffs [28] userspace

file system framework and the host kernel provide memory mapping support for

the microkernel client. The page fault is resolved in the host kernel, and the I/O

request for paging in the necessary data sent to the rump kernel. After the rump

kernel has satisfied the request and responded via puffs, the host kernel unblocks

the process that caused the page fault (Figure 2.6). If a desirable use case is found,

distributed shared memory [40] can be investigated for memory mapping support in

remote clients.
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Another implication of the lack of memory protection is that a local client can freely

access the memory in a rump kernel. Consider the BPF example which accesses the

kernel directly (Figure 2.3). Not only does the local client call kernel routines, it

also examines the contents of a kernel data structure.

2.5 Distributed Services with Remote Clients

As mentioned in our client taxonomy in Section 2.2, remote clients use services from

a rump kernel hosted either on the same host in another process or on a remote host.

We describe the general concept here and provide implementation details later in

Section 3.12.

It is known to be possible to build a Unix system call emulation library on top of

a distributed system [41]. We go further: while we provide the Unix interface to

applications, we also use existing Unix kernel code at the server side.

Running a client and the rump kernel on separate hosts is possible because on a

fundamental level Unix already works like a distributed system: the kernel and

user processes live in different address spaces and information is explicitly moved

across this boundary by the kernel. Copying data across the boundary simplifies the

kernel, since data handled by the kernel can always be assumed to be resident and

non-changing. Explicit copy requests in the kernel code make it possible to support

remote clients by implementing only a request transport layer. System calls become

RPC requests from the client to the kernel and routines which copy data between

arbitrary address spaces become RPC requests from the kernel to the client.

When a remote client connects to a rump kernel, it gets assigned a rump kernel

process context with appropriate credentials. After the handshake is complete, the

remote client can issue service requests via the standard system call interface. First,
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the client calls a local stub routine, which marshals the request. The stub then

sends the request to the server and blocks the caller. After the rump kernel server

has processed the request and responded, the response is decoded and the client

is unblocked. When the connection between a rump kernel and a remote client is

severed, the rump kernel treats the client process as terminated.

The straightforward use of existing data structures has its limitations: the system

the client is hosted on must share the same ABI with the system hosting the rump

kernel. Extending support for systems which are not ABI-compatible is beyond the

scope of our work. However, working remote client support shows that it is possible

to build distributed systems out of a Unix codebase without the need for a new

design and codebase such as Plan 9 [46].

2.6 Summary

Rump kernels provide lightweight driver stacks which can run on practically any

platform. To be as lightweight and portable as possible, rump kernels rely on two

features: relegating support functionality to the host and an anykernel codebase

where different units of the kernel (e.g. networking and file systems) are disjoint

enough to be usable in configurations where all parties are not present.

Rump kernels support three types of clients: local, microkernel and remote. Each

client type has its unique properties and varies for example in access rights to a

rump kernel, the mechanism for making requests, and performance characteristics.

Remote clients are able to access a rump kernel over the Internet and other media.

For drivers to function, a rump kernel must possess runtime context information.

This information consists of the process/thread context and a unique rump kernel

CPU that each thread is associated with. A rump kernel does not assume virtual
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memory, and does not provide support for page faults or memory protection. Virtual

memory protection and page faults, where necessary, are always left to be performed

by the host of the rump kernel client.
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3 Implementation: Anykernel and Rump Kernels

The previous chapter discussed the concept of an anykernel and rump kernels. This

chapter describes the code level modifications that were necessary for a production

quality implementation on NetBSD. The terminology used in this chapter is mainly

that of NetBSD, but the concepts apply to other similar operating systems as well.

In this chapter we reduce the number of variables in the discussion by limiting our

examination to rump kernels and their clients running on a NetBSD host. See the

next chapter (Chapter 4) for discussion on rump kernels and their clients running

on hosts beyond NetBSD userspace.

3.1 Kernel Partitioning

As mentioned in Section 2.1.2, to maximize the lightweight nature of rump kernels,

the kernel code was several logical layers: a base, three factions (dev, net and vfs)

and drivers. The factions are orthogonal, meaning they do not depend on each

other. Furthermore, the base does not depend on any other part of the kernel.

The modifications we made to reach this goal of independence are described in this

section.

As background, it is necessary to recall how the NetBSD kernel is linked. In C link-

age, symbols which are unresolved at compile-time must be satisfied at binary link-

time. For example, if a routine in file1.c wants to call myfunc() and myfunc()

is not present in any of the object files or libraries being linked into a binary, the

linker flags an error. A monolithic kernel works in a similar fashion: all symbols

must be resolved when the kernel is linked. For example, if an object file with an

unresolved symbol to the kernel’s pathname lookup routine namei() is included,
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then either the symbol namei must be provided by another object file being linked,

or the calling source module must be adjusted to avoid the call. Both approaches

are useful for us and the choice depends on the context.

We identified three obstacles for having a partitioned kernel:

1. Compile-time definitions (#ifdef) indicating which features are present

in the kernel. Compile-time definitions are fine within a component, but

do not work between components if linkage dependencies are created (for

example a cross-component call which is conditionally included in the com-

pilation).

2. Direct references between components where we do not allow them. An

example is a reference from the base to a faction.

3. Multiclass source modules contain code which logically belongs in several

components. For example, if the same file contains routines related to both

file systems and networking, it belongs in this problem category.

Since our goal is to change the original monolithic kernel and its characteristics

as little as possible, we wanted to avoid heavy approaches in addressing the above

problems. These approaches include but are not limited to converting interfaces to

be called only via pointer indirection. Instead, we observed that indirect interfaces

were already used on most boundaries (e.g. struct fileops, struct protosw,

etc.) and we could concentrate on the exceptions. Code was divided into function-

ality groups using source modules as boundaries.

The two techniques we used to address problems are as follows:

1. code moving. This solved cases where a source module belonged to several

classes. Part of the code was moved to another module. This technique had
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to be used sparingly since it is very intrusive toward other developers who

have outstanding changes in their local trees. However, we preferred moving

over splitting a file into several portions using #ifdef, as the final result is

clearer to anyone looking at the source tree.

In some cases code, moving had positive effects beyond rump kernels. One

such example was splitting up sys/kern/init_sysctl.c, which had evolved

to include sysctl handlers for many different pieces of functionality. For exam-

ple, it contained the routines necessary to retrieve a process listing. Moving

the process listing routines to the source file dealing with process manage-

ment (sys/kern/kern_proc.c) not only solved problems with references to

factions, but also grouped related code and made it easier to locate.

2. function pointers. Converting direct references to calls via function point-

ers removes link-time restrictions. A function pointer gets a default value at

compile time. Usually this value is a stub indicating the requested feature is

not present. At runtime the pointer may be adjusted to point to an actual

implementation of the feature if it is present.

Previously, we also used weak symbol aliases sparingly to provide stub implemen-

tations which were overridden by the linker if the component providing the actual

implementation was linked. Weak aliases were found to be problematic with dy-

namically linked libraries on some userspace platforms, e.g. Linux with glibc. In

lazy binding, a function is resolved by the dynamic linker only when the function

is first called, so as to avoid long program startup times due to resolving symbols

which are never used at runtime. As a side-effect, lazy binding theoretically allows

dlopen()’ing libraries which override weak aliases as long as the libraries are loaded

before the overridden functions are first called. Namely, in the case of rump kernels,

loading must take place before rump_init() is called. However, some dynamic

linkers treat libraries loaded with dlopen() different from ones loaded when the

binary is executed. For example, the aforementioned glibc dynamic linker overrides
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weak aliases with symbols from dlopen()’d libraries only if the environment vari-

able LD_DYNAMIC_WEAK is set. With some other dynamic linkers, overriding weak

symbols is not possible at all. Part of the power of rump kernels is the ability to pro-

vide a single binary which dynamically loads the necessary components at runtime

depending on the configuration or command line parameters. Therefore, to ensure

that rump kernels work the same on all userspace platforms, we took the extra steps

necessary to remove uses of weak aliases and replace them with the above-mentioned

two techniques.

To illustrate the problems and our necessary techniques, we discuss the modifications

to the file sys/kern/kern_module.c. The source module in question provides

support for loadable kernel modules (discussed further in Section 3.8.1). Originally,

the file contained routines both for loading kernel modules from the file system and

for keeping track of them. Having both in one module was a valid possibility before

the anykernel faction model. In the anykernel model, loading modules from a file

system is VFS functionality, while keeping track of the modules is base functionality.

To make the code comply with the anykernel model, we used the code moving

technique to move all code related to file system access to its own source file in

kern_module_vfs.c. Since loading from a file system must still be initiated by the

kernel module management routines, we introduced a function pointer interface. By

default, it is initialized to a stub:

int (*module_load_vfs_vec)(const char *, int, bool, module_t *,

prop_dictionary_t *) = (void *)eopnotsupp;

If VFS is present, the routine module_load_vfs_init() is called during VFS sub-

system init after the vfs_mountroot() routine has successfully completed to set

the value of the function pointer to module_load_vfs(). In addition to avoiding a



63

direct reference from the base to a faction in rump kernels, this pointer has another

benefit: during bootstrap it protects the kernel from accidentally trying to load

kernel modules from the file system before the root file system has been mounted 2.

3.1.1 Extracting and Implementing

We have two methods for providing functionality in the rump kernel: we can extract

it out of the kernel sources, meaning we use the source file as such, or we can

implement it, meaning that we do an implementation suitable for use in a rump

kernel. We work on a source file granularity level, which means that either all of

an existing source file is extracted, or the necessary routines from it (which may be

all of them) are implemented. Implemented source files are placed under sys/rump,

while extracted ones are picked up by Makefiles from other subdirectories under

sys/.

The goal is to extract as much as possible for the features we desire, as to minimize

implementation and maintenance effort and to maximize the semantic correctness

of the used code. Broadly speaking, there are three cases where extraction is not

possible.

1. code that does not exist in the regular kernel: this means drivers

specific to rump kernels. Examples include anything using rump hypercalls,

such as the virtual block device driver.

2. code dealing with concepts not supported in rump kernels. An

example is the virtual memory fault handler: when it is necessary to call a

routine which in a regular kernel is invoked from the fault hander, it must be

done from implemented code.

2sys/kern/vfs_subr.c rev 1.401
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It should be noted, though, that not all VM code should automatically be

disqualified from extraction. For instance, VM readahead code is an algo-

rithm which does not have anything per se to do with virtual memory, and

we have extracted it from sys/uvm/uvm_readahead.c.

3. bypassed layers such as scheduling. They need different handling.

In some cases a source module contained code which was desirable to be extracted,

but it was not possible to use the whole source module because others parts were

not suitable for extraction. Here we applied the code moving technique. As an

example, we once again look at the code dealing with processes (kern_proc.c).

The source module contained mostly process data structure management routines,

e.g. the routine for mapping a process ID number (pid_t) to the structure describing

it (struct proc *). We were interested in being able to extract this code. However,

the same file also contained the definition of the lwp0 variable. Since that definition

included references to the scheduler (“concept not supported in a rump kernel”), we

could not extract the file as such. However, after moving the definition of lwp0 to

kern_lwp.c, where it arguably belongs, kern_proc.c could be extracted.

3.1.2 Providing Components

We provide components as libraries. The kernel base library is called librump and

the hypervisor library is called librumpuser. The factions are installed with the

names librumpdev, librumpnet and librumpvfs for dev, net and vfs, respectively.

The driver components are named with the pattern librump<faction>_driver,

e.g. librumpfs_nfs (NFS client driver). The faction part of the name is an in-

dication of what type of driver is in question, but it does not convey definitive

information on what the driver’s dependencies are. For example, consider the NFS

client: while it is a file system driver, it also depends on networking.
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Figure 3.1: Performance of position independent code (PIC). A regular
kernel is compiled as non-PIC code. This compilation mode is effectively the same
as “none” in the graph. If the hypervisor and rump kernel base use PIC code, the
execution time increases as is expected. In other words, rump kernels allow to make
a decision on the tradeoff between execution speed and memory use.

Two types of libraries are available: static and dynamic. Static libraries are linked

by the toolchain into the binary, while dynamic binaries are linked at runtime.

Commonly, dynamic linking is used with shared libraries compiled as position inde-

pendent code (PIC), so as to allow one copy of a library to be resident in memory

and be mapped into an arbitrary number of programs. Rump kernels support both

types of libraries, but it needs to be noted that dynamic linking depends on the host

supporting that runtime feature. It also need to be noted that while shared libraries

save memory in case they are needed more than once, they have inherently worse

performance due to indirection [21]. Figure 3.1 illustrates that performance penalty

by measuring the time it takes to create and disband 300k threads in a rump kernel.

As can be deduced from the combinations, shared and static libraries can be mixed

in a single rump kernel instance so as to further optimize the behavior with the

memory/CPU tradeoff.
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3.2 Running the Kernel in an Hosted Environment

Software always runs on top of an entity which provides the interfaces necessary for

the software to run. A typical operating system kernel runs on top of hardware and

uses the hardware’s “interfaces” to fulfill its needs. When running on top a hardware

emulator the emulator provides the same hardware interfaces. In a paravirtualized

setup the hypervisor provides the necessary interfaces. In a usermode OS setup, the

application environment of the hosting OS makes up the hypervisor. In this section

we discuss details related to hosting a rump kernel in any environment. We use

POSIX userspace as the case for the bulk of the discussion, since that host induces

the superset of issues related to hosting rump kernels.

3.2.1 C Symbol Namespaces

In the regular case, the kernel and userspace C namespaces are disjoint. Both the

kernel and application can contain the same symbol name, for example printf,

without a collision occurring. When we run the kernel in a process container, we

must take care to preserve this property. Calls to printf made by the client still need

to go to libc, while calls to printf made by the rump kernel need to be handled by

the in-kernel implementation.

Single address space operating systems provide a solution [12], but require a dif-

ferent calling convention. On the other hand, C preprocessor macros were used by

OSKit [18] to rename conflicting symbols and allow multiple different namespaces

to be linked together. UML [16] uses a variant of the same technique and renames

colliding symbols using a set of preprocessor macros in the kernel build Makefile,

e.g. -Dsigprocmask=kernel_sigprocmask. This manual renaming approach is in-

adequate for a rump kernel; unlike a usermode OS kernel which is an executable

application, a rump kernel is a library which is compiled, shipped, and may be linked
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explicit

namespace: rump

rump_sys() rump_func()

implicit

application_func()

namespace: std

Figure 3.2: C namespace protection. When referencing a rump kernel symbol
from outside of the rump kernel, the prefix must be explicitly included in the code.
All references from inside the rump kernel implicitly contain the prefix due to bulk
symbol renaming. Corollary: it is not possible to access a symbol outside the rump
kernel namespace from inside the rump kernel without using a hypercall.

with any other libraries afterwards. This set of libraries is not available at compile

time and therefore we cannot know which symbols will cause conflicts at link time.

Therefore, the only option is to assume that any symbol may cause a conflict.

We address the issue by protecting all symbols within the rump kernel. The objcopy

utility’s rename functionality is used ensure that all symbols within the rump kernel

have a prefix starting with “rump” or “RUMP”. Symbol names which do not begin

with “rump” or “RUMP” are renamed to contain the prefix “rumpns ”. After renam-

ing, the kernel printf symbol will be seen as rumpns_printf by the linker. Prefixes

are illustrated in Figure 3.2: callers outside of a rump kernel must include the prefix

explicitly, while the prefix for routines inside a rump kernel is implicit since it is au-

tomatically added by objcopy. Table 3.1 illustrates further by providing examples

of the outcome of renaming.

However, renaming all symbols also creates a problem. Not all symbols in a ker-

nel object file come from kernel source code. Some symbols are a property of the

toolchain. An example is _GLOBAL_OFFSET_TABLE_, which is used by position in-

dependent code to store the offsets. Renaming toolchain-generated symbols causes

failures, since the toolchain expects to find symbols where it left them.
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rump kernel object original symbol name symbol after renaming

yes rump_sys_call rump_sys_call

yes printf rumpns_printf

no rump_sys_call rump_sys_call

no printf printf

Table 3.1: Symbol renaming illustrated. Objects belonging to a rump kernel
have their exported symbols and symbol dereferences renamed, if necessary, so that
they are inside the rump kernel namespace. Objects which do not belong to a rump
kernel are not affected.

We observed that almost all of the GNU toolchain’s symbols are in the double-

underscore namespace “ ”, whereas the NetBSD kernel exported under 10 sym-

bols in that namespace. The decision was to rename existing kernel symbols in

the double underscore namespace to a single underscore namespace and exclude

the double underscore namespace from the rename. There were two exceptions

to the double underscore rule which had to be excluded from the rename as well:

_GLOBAL_OFFSET_TABLE_ and architecture specific ones. We handle the architec-

ture specific ones with a quirk table. There is one quirk each for PA-RISC, MIPS,

and PowerPC64. For example, the MIPS toolchain generates the symbol _gp_disp,

which needs to be excluded from the renaming. Experience of over 5 years shows

that once support for an architecture is added, no maintenance is required.

We conclude mass renaming symbols is a practical and feasible solution for the

symbol collision problem which, unlike manual renaming, does not require knowledge

of the set of symbols that the application namespace exports.
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3.2.2 Privileged Instructions

Kernel code dealing with for example the MMU may execute CPU instructions

which are available only in privileged mode. Executing privileged instructions while

in non-privileged mode should cause a trap and the host OS or VMM to take control.

Typically, this trap will result in process termination.

Virtualization and CPU emulation technologies solve the problem by not execut-

ing privileged instructions on the host CPU in unprivileged mode. For example,

paravirtualized Xen [3] uses hypercalls, User Mode Linux [16] does not use privi-

leged instructions in the usermode machine dependent code, QEMU [5] handles such

instructions in the machine emulator, and CPU virtualization extensions trap the

handling of those instructions to the hypervisor.

In practice kernel drivers do not use privileged instructions because they are found

only in the architecture specific parts of the kernel. Therefore, we can solve the

problem by defining that it does not exist in our model — if there are any it is a

failure in modifying the OS to support rump kernels.

3.2.3 The Hypercall Interface(s)

The hypercall interfaces allow a rump kernel to access host platform resources and

integrate with the host. For example, page level memory allocation and the blocking

and running of threads is accomplished via the hypercall interface. Essentially, the

hypercall interface represents the minimal interface for running kernel drivers. As

we shall see later in Section 4.2, transitively the hypercall interface is also the min-

imal interface for running POSIX applications. Notably, the Embassies project [25]

investigated a minimal execution interface for applications, and ended up with a

similar interface, thereby increasing our confidence in our result being correct.



70

Historically, all hypercalls were globally implemented by a single library. This was

found to be inflexible for I/O devices for two reasons:

• Different I/O devices have different requirements. Imagine the hypercalls for

a network interface necessary to send and receive packets. If you imagined a

PCI network interface card, the necessary hypercalls are completely different

from if you imagined /dev/tap or netmap [50]. With a growing number of

different I/O devices being supported, codifying the different requirements

under a compact, fast and understandable interface was not seen to be rea-

sonably possible.

• Not all platforms require all I/O devices to be supported. Globally pooling all

hypercalls together obfuscates what is the minimal required set of hypercall

functionality to run rump kernel on a given platform with a given set of I/O

devices.

Therefore, there are now two types of hypercalls: main hypercalls, which are always

required by every rump kernel, and I/O hypercalls, which allow given types of I/O

drivers to operate. The main hypercall interface is a single, stable and versioned

interface. The I/O hypercalls are private to the I/O bus or the I/O driver, and

an implementation is required only if the component using the hypercall is linked

into the rump kernel. The versioning of I/O hypercalls and changes to them are

up to individual drivers, and for example over the course of optimizing networking

packet processing performance, we made several tweaks to the hypercalls used by

the virtual packet I/O drivers (Section 3.9.1). These changes provided for example

the ability to deliver packets in bursts and zero-copy processing. For the remainder

of this section we will describe the main hypercall interface.
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Main hypercalls

For the historical reason of rump kernels initially running in userspace, the hy-

percall interface is called rumpuser ; for example rumphyper would be a more de-

scriptive name, but changing it now brings unnecessary hassle. The version of the

hypercall revision we describe here is 17. In reality, version 17 means the second

stable rendition of the interface, as during initial development the interface was

changed frequently and the version was bumped often. The canonical implementa-

tion for the interface is the POSIX platform implementation, currently found from

lib/librumpuser in the NetBSD tree. Implementations for other platforms are

found from http://repo.rumpkernel.org/, and also from 3rd parties.

As an example of a hypercall, we consider allocating memory from the host. A

hypercall is the only way that a rump kernel can allocate memory at runtime.

Notably, though, in the fastpath case the hypercall is used to allocate page-sized

chunks of memory, which are then dosed out by the pool and slab allocators in the

rump kernel. The signature of the memory allocation hypercall is the following:

int rumpuser_malloc(size_t howmuch, int alignment, void **retp);

If a hypercall can fail, its return type is int, and it returns 0 for success or an

error code. If a hypercall cannot fail, it is of type void. If successful, the mem-

ory allocation hypercall will have allocated howmuch bytes of memory and returns

a pointer to that memory in retp. The pointer is guaranteed to be aligned to

alignment bytes. For example on POSIX the implementation of this interface is a

call to posix_memalign() or equivalent.

The header file sys/rump/include/rump/rumpuser.h defines the hypercall inter-

face. All hypercalls by convention begin with the string “rumpuser”. This naming

http://repo.rumpkernel.org/
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convention prevents hypercall interface references in the rump kernel from falling

under the jurisdiction of symbol renaming and hence the hypercalls are accessible

from the rump kernel.

The hypercalls required to run rump kernels can be categorized into the following

groups:

• initialization: bootstrap the hypercall layer and check that the rump kernel

hypercall version matches a version supported by the hypercall implementa-

tion. This interface is called as the first thing when a rump kernel initializes.

• memory management: allocate aligned memory, free

• thread management: create and join threads, TLS access

• synchronization routines: mutex, read/write lock, condition variable.

• time management: get clock value, suspend execution of calling thread for

the specified duration

• exit: terminate the platform. Notably, in some cases it is not possible to

implement this fully, e.g. on bare metal platforms without software power

control. In that case, a best effort approximation should be provided.

There are also a number of optional hypercalls, which are not strictly speaking

required in all cases, but are nevertheless part of core functionality:

• errno handling: If system calls are to be made, the hypervisor must be able

to set a host thread-specific errno so that the client can read it. Note: errno

handling is unnecessary if the clients do not use the rump system call API.
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• putchar: output character onto console. Being able to print console output

is helpful for debugging purposes.

• printf : a printf-like call. see discussion below.

The Benefit of a printf-like Hypercall

The rumpuser_dprintf() call has the same calling convention as the NetBSD ker-

nel printf() routine. It is used to write debug output onto the console, or elsewhere

if the implementation so chooses. While the kernel printf() routine can be used

to produce debug output via rumpuser_putchar(), the kernel printf routine in-

kernel locks to synchronize with other in-kernel consumers of the same interface.

These locking operations may cause the rump kernel virtual CPU context to be

relinquished, which in turn may cause inaccuracies in debug prints especially when

hunting racy bugs. Since the hypercall runs outside of the kernel, and will not un-

schedule the current rump kernel virtual CPU, we found that debugging information

produced by it is much more accurate. Additionally, a hypercall can be executed

without a rump kernel context. This property was invaluable when working on the

low levels of the rump kernel itself, such as thread management and CPU scheduling.

3.3 Rump Kernel Entry and Exit

As we discussed in Chapter 2, a client must possess an execution context before it

can successfully operate in a rump kernel. These resources consist of a rump kernel

process/thread context and a virtual CPU context. The act of ensuring that these

resources have been created and selected is presented as pseudocode in Figure 3.3

and available as real code in sys/rump/librump/rumpkern/scheduler.c. We will

discuss obtaining the thread context first.
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Recall from Section 2.3 that there are two types of thread contexts: an implicit one

which is dynamically created when a rump kernel is entered and a bound one which

the client thread has statically set. We assume that all clients which are critical

about their performance use bound threads.

The entry point rump_schedule()3 starts by checking if the host thread has a

bound rump kernel thread context. This check maps to consulting the host’s thread

local storage with a hypercall. If a value is set, it is used and the entrypoint can

move to scheduling a CPU.

In case an implicit thread is required, we create one. We use the system thread

lwp0 as the bootstrap context for creating the implicit thread. Since there is only

one instance of this resource, it must be locked before use. After a lock on lwp0

has been obtained, a CPU is scheduled for it. Next, the implicit thread is created

and it is given the same CPU we obtained for lwp0. Finally, lwp0 is unlocked and

servicing the rump kernel request can begin.

The exit point is the converse: in case we were using a bound thread, just releasing

the CPU is enough. In case an implicit thread was used it must be released. Again,

we need a thread context to do the work and again we use lwp0. A critical detail

is noting the resource acquiry order which must be the same as the one used at the

entry point. The CPU must be unscheduled before lwp0 can be locked. Next, a

CPU must be scheduled for lwp0 via the normal path. Attempting to obtain lwp0

while holding on to the CPU may lead to a deadlock.

Instead of allocating and free’ing an implicit context at every entry and exit point,

respectively, a possibility is to cache them. Since we assume that all performance-

conscious clients use bound threads, caching would add unwarranted complexity.

3 rump_schedule() / rump_unschedule() are slight misnomers and for example rump_enter()
/ rump_exit() would be more descriptive. The interfaces are exposed to clients, so changing the
names is not worth the effort anymore.
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void

rump_schedule()

{

struct lwp *lwp;

if (__predict_true(lwp = get_curlwp()) != NULL) {

rump_schedule_cpu(lwp);

} else {

lwp0busy();

/* allocate & use implicit thread. uses lwp0’s cpu */

rump_schedule_cpu(&lwp0);

lwp = rump_lwproc_allocateimplicit();

set_curlwp(lwp);

lwp0rele();

}

}

void

rump_unschedule()

{

struct lwp *lwp = get_curlwp();

rump_unschedule_cpu(lwp);

if (__predict_false(is_implicit(lwp))) {

lwp0busy();

rump_schedule_cpu(&lwp0);

rump_lwproc_releaseimplicit(lwp);

lwp0rele();

set_curlwp(NULL);

}

}

Figure 3.3: Rump kernel entry/exit pseudocode. The entrypoint and exit-
point are rump_schedule() and rump_unschedule(), respectively. The assignment
of a CPU and implicit thread context are handled here.
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3.3.1 CPU Scheduling

Recall from Section 2.3.2 that the purpose of the rump kernel CPU scheduler is to

map the currently executing thread to a unique rump CPU context. In addition to

doing this mapping at the entry and exit points as described above, it must also

be done around potentially blocking hypercalls as well. One reason for releasing

the CPU around hypercalls is because the wakeup condition for the hypercall may

depend on another thread being able to run. Holding on to the CPU could lead to

zero available CPUs for performing a wakeup, and the system would deadlock.

The straightforward solution is to maintain a list of free virtual CPUs: allocation is

done by taking an entry off the list and releasing is done by putting it back on the

list. A list works well for uniprocessor hosts. However, on a multiprocessor system

with multiple threads, a global list causes cache contention and lock contention. The

effects of cache contention can be seen from Figure 3.4 which compares the wall time

for executing 5 million getpid() calls per thread per CPU. This run was done 10

times, and the standard deviation is included in the graph (if it is not visible, it is

practically nonexistent). The multiprocessor run took approximately three times as

long as the uniprocessor one — doubling the number of CPUs made the normalized

workload slower. To optimize the multiprocessor case, we developed an improved

CPU scheduling algorithm.

Improved algorithm

The purpose of a rump kernel CPU scheduling algorithm is twofold. First, it ensures

that at most one thread is using the CPU at any point in time. Second, it ensures

that cache coherency is upheld. We dissect the latter point further. On a physical

system, when thread A relinquishes a CPU and thread B is scheduled onto the

same CPU, both threads will run on the same physical CPU, and therefore all data
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Figure 3.4: System call performance using the trivial CPU scheduler.
While a system call into the rump kernel is faster in a single-threaded process, it is
both jittery and slow for a multithreaded process. This deficiency is something we
address with the advanced rump kernel CPU scheduler presented later.

they see in the CPU-local cache will trivially be coherent. In a rump kernel, when

host thread A relinquishes the rump kernel virtual CPU, host thread B may acquire

the same rump kernel virtual CPU on a different physical CPU. Unless the physical

CPU caches are properly updated, thread B may see incorrect data. The simple way

to handle cache coherency is to do a full cache update at every scheduling point.

However, a full update is wasteful in the case where a host thread is continuously

scheduled onto the same rump kernel virtual CPU.

The improved algorithm for CPU scheduling is presented as pseudocode in Fig-

ure 3.5. It is available as code in sys/rump/librump/rumpkern/scheduler.c.

The scheduler is optimized for the case where the number of active worker threads

is smaller than the number of configured virtual CPUs. This assumption is reason-

able for rump kernels, since the amount of virtual CPUs can be configured based on

each individual application scenario.
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The fastpath is taken in cases where the same thread schedules the rump kernel

consecutively without any other thread running on the virtual CPU in between.

The fastpath not only applies to the entry point, but also to relinquishing and

rescheduling a CPU during a blocking hypercall. The implementation uses atomic

operations to minimize the need for memory barriers which are required by full

locks.

Next, we offer a verbose explanation of the scheduling algorithm.

1. Use atomic compare-and-swap (CAS) to check if we were the previous thread

to be associated with the CPU. If that is the case, we have locked the CPU

and the scheduling fastpath was successful.

2. The slow path does a full mutex lock to synchronize against another thread

releasing the CPU. In addition to enabling a race-free sleeping wait, using a

lock makes sure the cache of the physical CPU the thread is running on is

up-to-date.

3. Mark the CPU as wanted with an atomic swap. We examine the return value

and if we notice the CPU was no longer busy at that point, try to mark it

busy with atomic CAS. If the CAS succeeds, we have successfully scheduled

the CPU. We proceed to release the lock we took in step 2. If the CAS did

not succeed, check if we want to migrate the lwp to another CPU.

4. In case the target CPU was busy and we did not choose to migrate to another

CPU, wait for the CPU to be released. After we have woken up, loop and

recheck if the CPU is available now. We must do a full check to prevent races

against a third thread which also wanted to use the CPU.
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void

schedule_cpu()

{

struct lwp *lwp = curlwp;

/* 1: fastpath */

cpu = lwp->prevcpu;

if (atomic_cas(cpu->prevlwp, lwp, CPU_BUSY) == lwp)

return;

/* 2: slowpath */

mutex_enter(cpu->mutex);

for (;;) {

/* 3: signal we want the CPU */

old = atomic_swap(cpu->prevlwp, CPU_WANTED);

if (old != CPU_BUSY && old != CPU_WANTED) {

membar();

if (atomic_cas(cpu->prevlwp, CPU_WANTED, CPU_BUSY) == CPU_WANTED) {

break;

}

}

newcpu = migrate(lwp, cpu);

if (newcpu != cpu) {

continue;

}

/* 4: wait for CPU */

cpu->wanted++;

cv_wait(cpu->cv, cpu->mutex);

cpu->wanted--;

}

mutex_exit(cpu->mutex);

return;

}

Figure 3.5: CPU scheduling algorithm in pseudocode. See the text for a
detailed description.
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Releasing a CPU requires the following steps. The pseudocode is presented in Fig-

ure 3.6. The fastpath is taken if no other thread wanted to take the CPU while the

current thread was using it.

1. Issue a memory barrier: even if the CPU is currently not wanted, we must

perform this step.

In more detail, the problematic case is as follows. Immediately after we

release the rump CPU, the same rump CPU may be acquired by another

hardware thread running on another physical CPU. Although the scheduling

operation must go through the slowpath, unless we issue the memory barrier

before releasing the CPU, the releasing CPU may have cached data which

has not reached global visibility.

2. Release the CPU with an atomic swap. The return value of the swap is

used to determine if any other thread is waiting for the CPU. If there are no

waiters for the CPU, the fastpath is complete.

3. If there are waiters, take the CPU lock and perform a wakeup. The lock

necessary to avoid race conditions with the slow path of schedule_cpu().
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void

unschedule_cpu()

{

struct lwp *lwp = curlwp;

/* 1: membar */

membar();

/* 2: release cpu */

old = atomic_swap(cpu->prevlwp, lwp);

if (old == CPU_BUSY) {

return;

}

/* 3: wake up waiters */

mutex_enter(cpu->mutex);

if (cpu->wanted)

cv_broadcast(cpu->cv);

mutex_exit(cpu->mutex);

return;

}

Figure 3.6: CPU release algorithm in pseudocode. See the text for a detailed
description.
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Figure 3.7: System call performance using the improved CPU scheduler.
The advanced rump kernel CPU scheduler is lockless and cache conscious. With it,
simultaneous system calls from multiple threads are over twice as fast as against the
host kernel and over four times as fast as with the old scheduler.

Performance

The impact of the improved CPU scheduling algorithm is shown in Figure 3.7. The

new algorithm performs four times as good as the freelist algorithm in the dual CPU

multithreaded case. It also performs twice as fast as a host kernel system call. Also,

there is scalability: the dual CPU case is within 1% of the performance of the single

CPU case — native performance is 20% weaker with two CPUs. Finally, the jitter

we set out to eliminate has been eliminated.

CPU-bound lwps

A CPU-bound lwp will execute only on a specific CPU. This functionality is required

for example for delivering a clock interrupt on every virtual CPU. Any lwp which
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is bound to a certain rump kernel virtual CPU simply has migration disabled. This

way, the scheduler will always try to acquire the same CPU for the thread.

Scheduler Priorities

The assumption is that a rump kernel is configured with a number of virtual CPUs

which is equal or greater to the number of frequently executing threads. Despite

this configuration, a rump kernel may run into a situation where there will be

competition for virtual CPUs. There are two ways to approach the issue of deciding

in which order threads should be given a rump CPU context: build priority support

into the rump CPU scheduler or rely on host thread priorities.

To examine the merits of having priority support in the rump CPU scheduler, we

consider the following scenario. Thread A has higher priority than thread B in the

rump kernel. Both are waiting for the same rump kernel virtual CPU. Even if the

rump CPU scheduler denies thread B entry because the higher priority thread A

is waiting for access, there is no guarantee that the host schedules thread A before

thread B could theoretically run to completion in the rump kernel. By this logic,

it is better to let host priorities dictate, and hand out rump kernel CPUs on a

first-come-first-serve basis. Therefore, we do not support thread priorities in the

rump CPU scheduler. It is the client’s task to call pthread_setschedparam() or

equivalent if it wants to set a thread’s priority.

3.3.2 Interrupts and Soft Interrupts

As mentioned in Section 2.3.3, a rump kernel CPU cannot be preempted. The mech-

anism of how an interrupt gets delivered requires preemption, so we must examine

that we meet the requirements of both hardware interrupts and soft interrupts.



84

Hardware interrupt handlers are typically structured to only do a minimal amount

of work for acknowledging the hardware. They then schedule the bulk work to be

done in a soft interrupt (softint) handler at a time when the OS deems suitable.

As mentioned in Section 2.3.3, we implement interrupts as threads which schedule

a rump kernel CPU, run the handler, and release the CPU. The only difference to

a regular system is that interrupts are scheduled instead of preempting the CPU.

Softints in NetBSD are almost like regular threads. However, they have a number

of special properties to keep scheduling and running them cheap:

1. Softints are run by level (e.g. networking and clock). Only one softint per

level per CPU may be running, i.e. softints will run to finish before the next

one may be started. Multiple outstanding softints will be queued until the

currently running one has finished.

2. Softints may block briefly to acquire a short-term lock (mutex), but may not

sleep. This property is a corollary of the previous property.

3. Softint handlers must run on the same CPU they were scheduled to. By de-

fault, softints are scheduled on the calling CPU. However, to distribute inter-

rupt load, NetBSD also allows scheduling softints to other CPUs. Regardless,

once the handler has been scheduled, it runs entirely on the scheduled CPU.

4. A softint may run only after the hardware interrupt finishes. That is to say,

the softint handler may not run immediately after it is scheduled, only when

the hardware interrupt handler that scheduled it has completed execution.

Although in a rump kernel even “hardware” interrupts are already scheduled, a

fair amount of code in NetBSD assumes that softint semantics are supported. For
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example, the callout framework [9] schedules soft interrupts from hardware clock

interrupts to run periodic tasks (used e.g. by TCP timers).

The users of the kernel softint facility expect them to operate exactly according

to the principles we listed. Initially, for simplicity, softints were implemented as

regular threads. The use of regular threads resulted in a number of problems. For

example, when the Ethernet code schedules a soft interrupt to do IP level processing

for a received frame, code first schedules the softint and only later adds the frame

to the processing queue. When softints were implemented as regular threads, the

host could run the softint thread before the Ethernet interrupt handler had put the

frame on the processing queue. If the softint ran before the packet was queued, the

packet would not be handled until the next incoming packet.

Soft interrupts are implemented in sys/rump/librump/rumpkern/intr.c. The

NetBSD implementation was not usable for rump kernels since that implementation

is based on interaction with the NetBSD scheduler. Furthermore, the NetBSD

implementation uses interprocess interrupts (IPIs) to schedule softints onto other

CPUs. Rump kernels do not have interrupts or interprocessor interrupts. Instead,

a helper thread is used. When scheduling a softint onto another rump kernel CPU,

the helper thread schedules itself onto that virtual CPU and schedules the softint

like for a local CPU. While that approach is not as performant as using IPIs, our

assumption is that in high-performance computing the hardware interrupt is already

scheduled onto the CPU where the work should be handled, thereby making the cost

of scheduling a softint onto another CPU a non-issue.

3.4 Virtual Memory Subsystem

The main purpose of the NetBSD virtual memory subsystem is to manage memory

address spaces and the mappings to the backing content [10]. While the memory
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address spaces of a rump kernel and its clients are managed by their respective hosts,

the virtual memory subsystem is conceptually exposed throughout the kernel. For

example, file systems are tightly built around being able to use virtual memory

subsystem data structures to cache file data. To illustrate, consider the standard

way the kernel reads data from a file system: memory map the file, access the

mapped range, and possibly fault in missing data [51].

Due to the design choice that a rump kernel does not use (nor require) a hardware

MMU, the virtual memory subsystem implementation is different from the regular

NetBSD VM. As already explained in Section 2.4, the most fundamental difference

is that there is no concept of page protection or a page fault inside the rump kernel.

The details of the rump kernel VM implementation along with their implications

are described in the following subsections. The VM is implemented in the source

module sys/rump/librump/rumpkern/vm.c. Additionally, routines used purely by

the file system faction are in sys/rump/librump/rumpvfs/vm_vfs.c.

Pages

When running on hardware, the pages described by the struct vmpage data struc-

ture correspond with hardware pages4. Since the rump kernel does not interface

with the MMU, the size of the memory page is merely a programmatical construct:

the kernel hands out physical memory in multiples of the page size. In a rump kernel

this memory is allocated from the host and since there is no memory protection or

faults, the page size can in practice be any power of two within a sensible size range.

However, so far there has been no reason to use anything different than the page

size for the machine architecture the rump kernel is running on.

4 This correspondence is not a strict rule. For example the NetBSD VAX port uses clusters of
512 byte contiguous hardware pages to create logical 4kB pages to minimize management overhead.
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The VM tracks status of when a page was last used. It does this tracking either

by asking the MMU on CPU architectures where that is supported, e.g. i386, or

by using memory protection and updating the information during page faults on

architectures where it is not, e.g. alpha. This information is used by the page

daemon during memory shortages to decide which pages are best suited to be paged

to secondary storage so that memory can be reclaimed for other purposes. Instead of

requiring a MMU to keep track of page usage, we observe that since memory pages

allocated from a rump kernel cannot be mapped into a client’s address space, the

pages are used only in kernel code. Every time kernel code wants to access a page,

it does a lookup for it using uvm_pagelookup(), uses it, and releases the reference.

Therefore, we hook usage information tracking to the lookup routine: whenever a

lookup is done, the page is deemed as accessed.

3.4.1 Page Remapping

In practice, the kernel does not map physical pages in driver code. However, there is

one exception we are interested in: the file system independent vnode pager. We will

explain the situation in detail. The pages associated with a vnode object are cached

in memory at arbitrary memory locations [51]. Consider a file which is the size of

three memory pages. The content for file offset 0x0000-0x0FFF might be in page X,

0x1000-0x1FFF in page X-1 and 0x2000-0x2FFF in page X+1. In other words, read-

ing and writing a file is a scatter-gather operation with respect to memory addresses.

When the standard vnode pager (sys/miscfs/genfs/genfs_io.c) writes contents

from memory to backing storage, it first maps all the pages belonging to the appro-

priate offsets in a continuous memory address by calling uvm_pagermapin(). This

routine in turn uses the pmap interface to request the MMU to map the physical

pages to the specified virtual memory range in the kernel’s address space. After this

step, the vnode pager performs I/O on this pager window. When I/O is complete,

the pager window is unmapped. Reading works essentially the same way: pages
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are allocated, mapped into a contiguous window, I/O is performed, and the pager

window is unmapped.

To support the standard NetBSD vnode pager with its remapping feature, there are

three options for dealing with uvm_pagermapin():

1. Create the window by allocating a new block of contiguous anonymous mem-

ory and use memory copy to move the contents. This approach works because

pages are unavailable to other consumers during I/O; otherwise e.g. write()

at an inopportune time might cause a cache flush to write half old half new

contents and cause a semantic break.

2. Modify the vnode pager to issue multiple I/O requests in case the backing

pages for a vnode object are not at consecutive addresses.

3. Accept that memory remapping support is necessary in a rump kernel.

It should be noted that a fourth option is to implement a separate vnode pager which

does not rely on mapping pages. This option was our initial approach. While the ef-

fort produced a superficially working result, we could not get all corner cases to func-

tion exactly the same as with the regular kernel — for example, the VOP_GETPAGES()

interface implemented by the vnode pager takes 8 different parameters and 14 dif-

ferent flags. The lesson learnt from this attempt with the vnode pager reflects our

premise for the entire work: it is easy to write superficially working code, but getting

all corner cases right for complicated drivers is extremely difficult.

So, which of the three options is the best? When comparing the first and the second

option, the principle used is that memory I/O is several orders of magnitude faster

than device I/O. Therefore, anything which affects device I/O should be avoided,

especially if it might cause extra I/O operations and thus option 1 is preferable over

option 2.
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Figure 3.8: Performance of page remapping vs. copying. Allocating a
pager window from anonymous memory and copying file pages to it for the purpose
of pageout by the vnode pager is faster than remapping memory backed by a file.
Additionally, the cost of copying is practically independent of the amount of non-
contiguous pages. With remapping, each disjoint region requires a separate call to
mmap().

To evaluate the first option against third option, let us ignore MMU-less environ-

ments where page remapping is not possible, and consider an environment where it

is possible albeit clumsy: userspace. Usermode operating systems typically use a

memory mapped file to represent the physical memory of the virtual kernel [16, 17].

The file acts as a handle and can be mapped to the location(s) desired by the user-

mode kernel using the mmap() system call. The DragonFly usermode vkernel uses

special host system calls to make the host kernel execute low level mappings [17].

We simulated pager conditions and measured the amount of time it takes to con-

struct a contiguous 64kB memory window out of non-contiguous 4kB pages and to

write the window out to a file backed by a memory file system. The result for 1000

loops as a function of non-contiguous pages is presented in Figure 3.8.
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The conclusion is that without direct access to a MMU, page remapping is either

slower than memory copy or impossible. The downside of memory copy is that

in low-memory environments you need twice the amount of memory of the largest

allowed pager window size. Furthermore, the pagedaemon (Section 3.4.3) needs the

window’s worth of reserved memory to ensure that it is possible to flush out pages

and release memory. The simple choice is to mitigate the problems by restricting

the pager window size.

3.4.2 Memory Allocators

Although memory allocators are not strictly speaking part of the virtual memory

subsystem, they are related to memory so we describe them here.

The lowest level memory allocator in NetBSD is the UVM kernel memory allocator

(uvm_km). It is used to allocate memory on a pagelevel granularity. The standard im-

plementation in sys/uvm/uvm_km.c allocates a virtual memory address range and,

if requested, allocates physical memory for the range and maps it in. Since mapping

is incompatible with a rump kernel, we did a straightforward implementation which

allocates a page or contiguous page range with a hypercall.

The kmem, pool and pool cache allocators are general purpose allocators meant to

be used by drivers. Fundamentally, they operate by requesting pages from uvm_km

and handing memory out in requested size chunks. The flow of memory between

UVM and the allocators is dynamic, meaning if an allocator runs out of memory, it

will request more from UVM, and if there is a global memory shortage, the system

will attempt to reclaim cached memory from the allocators. We have extracted the

implementations for these allocators from the standard NetBSD kernel and provide

them as part of the rump kernel base.
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3.4.3 Pagedaemon

The NetBSD kernel uses idle memory for caching data. As long as free memory is

available, it will be used for caching. NetBSD’s pagedaemon serves the purpose of

pushing out unnecessary data to recycle pages when memory is scarce. A mecha-

nism is required to keep long-running rump kernels from consuming all memory for

caching. The choices are to either eliminate caching and free memory immediately

after it has been used, or to create a pagedaemon which can operate despite memory

access information not being available with the help of a MMU. Since eliminating

caching is undesirable for performance reasons, we chose the latter option.

Typically, a system will have a specific amount of memory assigned to it. A straight-

forward example is a system running directly on hardware. While we could always

require that the amount of memory be specified, that would introduce a default

and configurable which is not always necessary. Since host memory is dynamically

allocated using hypercalls, we can observe that in some cases we simply do not have

to configure the amount of available memory. For example, short-lived test cases

for kernel drivers running on a userspace host do not need one. For the rest of the

discussion, we do assume that we have an “inflexible” use case and host, and do need

to configure the amount of available memory.

When the available memory is close to being exhausted, the rump kernel invokes

the pagedaemon, which is essentially a kernel thread, to locate and free memory re-

sources which are least likely to be used in the near future. There are fundamentally

two types of memory: pageable and wired.

• Pageable memory means that a memory page can be paged out. Paging

is done using the pager construct that the NetBSD VM (UVM) inherited

from the Mach VM [49] via the 4.4BSD VM. A pager has the capability to

move the contents of the page in and out of secondary storage. NetBSD
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currently supports three classes of pagers: anonymous, vnode and device.

Device pagers map device memory, so they can be left out of a discussion

concerning RAM. We extract the standard UVM anonymous memory object

implementation (sys/uvm/uvm_aobj.c) mainly because the tmpfs file sys-

tem requires anonymous memory objects. However, we compile uvm_aobj.c

without defining VMSWAP, i.e. the code for support moving memory to and

from secondary is not included. Our view is that paging anonymous memory

should be handled by the host. What is left is the vnode pager, i.e. moving

file contents between the memory cache and the file system.

• Wired memory is non-pageable, i.e. it is always present and mapped. Still,

it needs to be noted that the host can page memory which is wired in the rump

kernel barring precautions such as a hypercall invoking mlock() — DMA-

safe memory notwithstanding (Section 4.2.5), this paging has no impact on

the rump kernel’s correctness. During memory shortage, the pagedaemon

requests the allocators to return unused pages back to the system.

The pagedaemon is implemented in the uvm_pageout() routine in the source file

sys/rump/librump/rumpkern/vm.c. The pagedaemon is invoked when memory

use exceeds the critical threshold, and additionally when the memory allocation

hypercall fails. The pagedaemon releases memory in stages, from the ones most

likely to bring benefit to the least likely. The use case the pagedaemon was developed

against was the ability to run file systems with a rump kernel with limited memory.

Measurements showing how memory capacity affects file system performance are

presented in Table 3.2.

Since all pages managed by the VM are dynamically allocated and free’d, shrinking

the virtual kernel or allowing it to allocate more memory is trivial. It is done

by adjusting the limit. Making the limit larger causes the pagedaemon to cease

activity until future allocations cause the new limit to be reached. Making the limit
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rump kernel memory limit relative performance

0.5MB 50%

1MB 90%

3MB 100%

unlimited (host container limit) 100%

Table 3.2: File system I/O performance vs. available memory. If memory
is extremely tight, the performance of the I/O system suffers. A few megabytes of
rump kernel memory was enough to allow file I/O processing at full media speed.

smaller causes the pagedaemon to clear out cached memory until the smaller limit

is satisfied. In contrast to the ballooning technique [56], a rump kernel will fully

release pages and associated metadata when memory is returned to the host.

Multiprocessor Considerations for the Pagedaemon

A rump kernel is more susceptible than a regular kernel to a single object using

a majority of the available memory, if not all. This phenomenon exists because

in a rump kernel it is a common scenario to use only one VM object at a time,

e.g. a single file is being written/read via a rump kernel. In a regular kernel there

minimally are at least a small number of active files due to various daemons and

system processes running.

Having all memory consumed by a single object leads to the following scenario on

a multiprocessor rump kernel:

1. A consumer running on CPU1 allocates memory and reaches the pagedaemon

wakeup limit.
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2. The pagedaemon starts running on CPU2 and tries to free pages.

3. The consumer on CPU1 consumes all available memory for a single VM object

and must go to sleep to wait for more memory. It is still scheduled on CPU1

and has not yet relinquished the memory object lock it is holding.

4. The pagedaemon tries to lock the object that is consuming all memory. How-

ever, since the consumer is still holding the lock, the pagedaemon is unable to

acquire it. Since there are no other places to free memory from, the pagedae-

mon can only go to a timed sleep and hope that memory and/or unlocked

resources are available when it wakes up.

This scenario killed performance, since all activity stalled at regular intervals while

the pagedaemon went to sleep to await the consumer going to sleep. Notably, in a

virtual uniprocessor setup the above mentioned scenario did not occur, since after

waking up the pagedaemon the consumer would run until it got to sleep. When the

pagedaemon got scheduled on the CPU and started running, the object lock had

already been released and the pagedaemon could proceed to free pages. To remedy

the problem in virtual multiprocessor setups, we implemented a check to see if the

object lock holder is running on another virtual CPU. If the pagedaemon was unable

to free memory, but it detects an object lock holder running on another CPU, the

pagedaemon thread yields. This yield usually gives the consumer a chance to release

the object lock so that the pagedaemon can proceed to free memory without a full

sleep like it would otherwise do in a deadlock situation.

3.5 Synchronization

The NetBSD kernel synchronization primitives are modeled after the ones from

Solaris [33]. Examples include mutexes, read/write locks and condition variables.
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Regardless of the type, all of them have the same basic idea: a condition is checked

for and if it is not met, the calling thread is put to sleep. Later, when another

thread has satisfied the condition, the sleeping thread is woken up.

The case we are interested in is when the thread checking the condition blocks. In

a regular kernel when the condition is not met, the calling thread is put on the

scheduler’s sleep queue and another thread is scheduled. Since a rump kernel is

not in control of thread scheduling, it cannot schedule another thread if one blocks.

When a rump kernel deems a thread to be unrunnable, it has two options: 1) spin

until the host decides to schedule another rump kernel thread 2) notify the host that

the current thread is unrunnable until otherwise announced.

Option 2 is desirable since it saves resources. However, no such standard interface

for implementing it exists on for example a POSIX host. The closest option would

be to suspend for an arbitrary period (yield, sleep, etc.). To solve the problem, we

define a set of hypercall interfaces which provide the mutex, read/write lock and

condition variable primitives. On for example POSIX hosts, the implementations

of those hypercalls are simply thin pass-through layers to the underlying locking

primitives (pthread_mutex_lock() etc.). Where the rump kernel interfaces do not

map 1:1, such as with the msleep() interface, we emulate the correct behavior using

the hypercall interfaces (sys/rump/librump/rumpkern/ltsleep.c).

As usual, for a blocking hypercall we need to unschedule and reschedule the rump

kernel virtual CPU context. For condition variables making the decision to un-

schedule is straightforward, since we know the wait routine is going to block, and

we can always release the CPU before the hypervisor calls libpthread. With some

underlying locking primitives (e.g. pthread), for mutexes and read/write locks we

do not know a priori if we are going to block. However, in those cases we can

make a logical guess: code should be architectured to minimize lock contention,

and therefore not blocking should be a more common operation than blocking. We
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first call the try variant of the lock operation. It does a non-blocking attempt and

returns true or false depending on if the lock was taken or not. In case the lock was

taken, we can return directly. If not, we unschedule the rump kernel CPU and call

the blocking variant. When the blocking variant returns, perhaps immediately in a

multiprocessor rump kernel, we reschedule a rump kernel CPU and return from the

hypercall.

3.5.1 Passive Serialization Techniques

Passive serialization [23] is essentially a variation of a reader-writer lock where the

read side of the lock is cheap and the write side of the lock is expensive, i.e. the

lock is optimized for readers. It is called passive serialization because readers do

not take an atomic hardware level lock. The lack of a read-side lock is made up

for by deferred garbage collection, where an old copy is released only after it has

reached a quiescent state, i.e. there are no readers accessing the old copy. In an

operating system kernel the quiescent state is usually established by making the old

copy unreachable and waiting until all CPUs in the system have run code.

An example of passive serialization used for example in the Linux kernel is the read-

copy update (RCU) facility [35]. However, the algorithm is patented and can be

freely implemented only in GPL or LGPL licensed code. Both licenses are seen as

too restrictive for the NetBSD kernel and are not allowed by the project. Therefore,

RCU itself cannot be implemented in NetBSD. Another example of passive serial-

ization is the rmlock (read-mostly lock) facility offered by FreeBSD. It is essentially

a reader/writer locking facility with a lockless fastpath for readers. The write locks

are expensive and require cross calling other CPUs and running code on them.

One example of where NetBSD uses passive synchronization is in the loading and

unloading of system calls in sys/kern/kern_syscall.c. These operations require
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atomic locking so as to make sure no system call is loaded more than once, and

also to make sure a system call is not unloaded while it is still in use. Having to

take a regular lock every time a system call is executed would be wasteful, given

that unloading of system calls during runtime takes place relatively seldom, if ever.

Instead, the implementation uses a passive synchronization algorithm where a lock

is used only for operations which are not performance-critical. We describe the

elements of the synchronization part of the algorithm, and then explain how it

works in a rump kernel.

Four cases must be handled:

1. execution of a system call which is loaded and functional (fast path)

2. loading a system call

3. attempting to execute an absent system call

4. unloading a system call

1: Regular Execution

Executing a system call is considered a read side lock. The essential steps are:

1. Set currently executing system call in curlwp->l_sysent. This step is exe-

cuted lockless and without memory barriers.

2. Execute system call.

3. Clear curlwp->l_sysent.
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2: Loading a System Call

Modifying the syscall vector is serialized using a lock. Since modification happens

seldom compared to syscall execution, this is not a performance issue.

1. Take the kernel configuration lock.

2. Check that the system call handler was not loading before we got the lock.

If it was, another thread raced us into loading the call and we abort.

3. Patch the new value to the system call vector.

4. Release the configuration lock.

3: Absent System Call

NetBSD supports autoloading absent system calls. This means that when a process

makes a system call that is not supported, loading a handler may be automatically

attempted. If loading a handler is successful, the system call may be able to complete

without returning an error to the caller. System calls which may be loaded at

runtime are set to the following stub in the syscall vector:

1. Take the kernel configuration lock. Locking is not a performance problem,

since any unloaded system calls will not be frequently used by applications,

and therefore will not affect system performance.

2. Check that the system call handler was not loading before we got the lock. If

it was, another thread raced us into loading the call and we restart handling.

Otherwise, we attempt to load the system call and patch the syscall vector.

3. Release the configuration lock.
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/*

* Run a cross call to cycle through all CPUs. This does two

* things: lock activity provides a barrier and makes our update

* of sy_call visible to all CPUs, and upon return we can be sure

* that we see pertinent values of l_sysent posted by remote CPUs.

*/

where = xc_broadcast(0, (xcfunc_t)nullop, NULL, NULL);

xc_wait(where);

Figure 3.9: Using CPU cross calls when checking for syscall users.

4. If the system call handler was loaded (by us or another thread), restart system

call handling. Otherwise, return ENOSYS and, due to Unix semantics, post

SIGSYS.

4: Unloading a System Call

Finally, we discuss the most interesting case for passive serialization: the unloading

of a system call. It showcases the technique that is used to avoid read-side locking.

1. Take the configuration lock.

2. Replace the system call with the stub in the system call vector. Once this

operation reaches the visibility of other CPUs, the handler can no longer be

called. Autoloading is prevented because we hold the configuration lock.

3. Call a cross-CPU broadcast routine to make sure all CPUs see the update

(Figure 3.9, especially the comment) and wait for the crosscall to run on all

CPUs. This crosscall is the key to the algorithm. There is no difference in

execution between a rump kernel with virtual CPUs and a regular kernel with

physical CPUs.
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4. Check if there are any users of the system call by looping over all thread soft

contexts and checking l_sysent. If we see no instances of the system call we

want to unload, we can now be sure there are no users. Notably, if we do see

a non-zero amount of users, they may or may not still be inside the system

call at the time of examination.

5. In case we saw threads inside the system call, prepare to return EBUSY: unroll

step 2 by reinstating the handler in the system call vector. Otherwise, unload

the system call.

6. Release the configuration lock and return success or an error code.

Discussion

The above example for system calls is not the only example of passive serialization in

a rump kernel. It is also used for example to reap threads executing in a rump kernel

when a remote client calls exec (sys/rump/librump/rumpkern/rump.c). Neverthe-

less, we wanted to describe a usage which existed independently of rump kernels.

In conclusion, passive synchronization techniques work in a rump kernel. There

is no reason we would not expect them to work. For example, RCU works in a

userspace environment [14] (a more easily obtained description is available in“Paper

3” here [13]). In fact, the best performing userspace implementation is one which

requires threads to inform the RCU manager when they enter a quiescent state

where they will not use any RCU-related resources. Since a rump kernel has a CPU

model, this quiescent state reached when there has been scheduler activity on all

rump kernel CPUs. In the syscall example this was accomplished by running the

CPU crosscall (Figure 3.9). Therefore, no modification is required as opposed to

what is required for pure userspace applications to support the quiescence based

RCU userspace approach [14].
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3.5.2 Spinlocks on a Uniprocessor Rump Kernel

In a non-preemptive uniprocessor kernel there is no need to take memory bus level

atomic locks since nonexistent CPUs cannot race into a lock. The only thing the

kernel needs to do is make sure interrupts or preemption do not occur in critical sec-

tions. Recall, there is no thread preemption in a rump kernel. While other physical

CPUs may exist on the host, the rump kernel scheduler will let only one thread ac-

cess the rump kernel at a time. Hence, for example the mutex lock fastpath becomes

a simple variable assignment without involving the memory bus. As we mentioned

already earlier, locking a non-taken lock is the code path we want to optimize, as

the assumption is that lock contention should be low in properly structured code.

Only in the case the mutex is locked must a hypercall be made to arrange for a sleep

while waiting for the lock to be released.

We implemented alternative uniprocessor optimized locking for rump kernels in the

file sys/rump/librump/rumpkern/locks_up.c 5. This implementation can be used

only in rump kernels with a single virtual CPU. As explained above, this implemen-

tation does not use the synchronization hypercalls unless it needs to arrange for a

thread to sleep while waiting for a lock to be released.

To see how effective uniprocessor-only locking is, we measured the performance of a

program which creates 200,000 files on the NetBSD tmpfs memory file system. The

results are presented in Figure 3.10. Next, we analyze the results.

5 “up” stands for uniprocessor.
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Figure 3.10: Cost of atomic memory bus locks on a twin core host.
The first figure presents the raw measurements and the second figure presents the
normalized durations per physical processor. MT means a multiprocessor rump
kernel with hardware atomic locks and UT designates a uniprocessor rump kernel
without hardware atomic locks. The number designates the amount of threads
concurrently executing within the rump kernel. Notably, in the case of four threads
there are twice as many threads executing within the rump kernel as there are
physical CPUs.
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The kernel with uniprocessor locking performs 34% better than the multiprocessor

version on a uniprocessor rump kernel. This significant difference can be explained

by the fact that creating files on memory file systems (rump_sys_open(O_CREAT))

is very much involved with taking and releasing locks (such as file descriptor locks,

directory locks, file object locks ...) and very little involved with I/O or hyper-

visor calls. To verify our results, we examined the number of mutex locks and

reader/writer locks and we found out they are taken 5,438,997 and 1,393,596 times,

respectively. This measurement implies the spinlock/release cycle fastpath in the

100ns range, which is what we would expect from a Core2 CPU on which the test

was run. The MT 4 case is slower than MT 2, because the test host has only two

physical cores, and four threads need to compete for the same physical cores.

The multiprocessor version where the number of threads and virtual CPUs matches

the host CPU allocation wins in wall time. However, if it is possible to distribute

work in single processor kernels on all host CPUs, they will win in total performance

due to IPC overhead being smaller than memory bus locking overhead [4].

3.6 Application Interfaces to the Rump Kernel

Application interfaces are used by clients to request services from the rump kernel.

Having the interfaces provided as part of the rump kernel framework has two pur-

poses: 1) it provides a C level prototype for the client 2) it wraps execution around

the rump kernel entry and exit points, i.e. thread context management and rump

kernel virtual CPU scheduling.

The set of available interfaces depends on the type of the client. Since the rump

kernel provides a security model for remote clients, they are restricted to the system

call interface — the system call interface readily checks the appropriate permissions

of a caller. A local client and a microkernel server’s local client are free to call
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any functions they desire. We demonstrated the ability to call arbitrary kernel

interfaces with the example on how to access the BPF driver without going through

the file system (Figure 2.3). In that example we had to provide our own prototype

and execute the entry point manually, since we did not use predefined application

interfaces.

3.6.1 System Calls

On a regular NetBSD system, a user process calls the kernel through a stub in libc.

The libc stub’s task is to trap into the kernel. The kernel examines the trapframe

to see which system call was requested and proceeds to call the system call handler.

After the call returns from the kernel, the libc stub sets errno.

We are interested in preserving the standard libc application interface signature for

rump kernel clients. Preserving the signature will make using existing code in rump

kernel clients easier, since the calling convention for system calls will remain the

same. In this section we will examine how to generate handlers for rump kernels

with minimal manual labor. All of our discussion is written against how system

calls are implemented in NetBSD. We use lseek() as an example of the problem

and our solution.

The signature of the lseek() system call stub in libc is as follows:

off_t

lseek(int fildes, off_t offset, int whence)

Prototypes are provided in header files. The header file varies from call to call. For

example, the prototype of lseek() is made available to an application by including
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the header file <unistd.h> while open() comes from <fcntl.h>. The system call

prototypes provided in the header files are handwritten. In other words, they are

not autogenerated. On the other hand, almost all libc stubs are autogenerated from

a list of system calls. There are some manually written exceptions for calls which do

not fit the standard mould, e.g. fork(). Since the caller of the libc stub arranges

arguments according to the platform’s calling convention per the supplied prototype

and the kernel picks them up directly from the trapframe, the libc stub in principle

has to only execute the trap instruction to initiate the handling of the system call.

In contrast to the libc application interface, the signature of the kernel entry point

for the handler of the lseek system call is:

int

sys_lseek(struct lwp *l, const struct sys_lseek_args *uap, register_t *rv)

This function is called by the kernel trap handler after it has copied parameters

from the trapframe to the args structure.

Native system calls are described by a master file in kernel source tree located

at sys/kern/syscalls.master. The script sys/kern/makesyscalls.sh uses the

data file to autogenerate, among other things, the above prototype for the in-kernel

implementation and the definition of the args structure.

We added support to the makesyscalls script for generating the necessary wrappers

and headers for rump kernel clients. For a caller to be able to distinguish between

a native system call and a rump kernel system call, the latter is exported with a

rump_sys-prefix, e.g. rump_sys_lseek(). The makesyscalls script generates rump

system call prototypes to sys/rump/include/rump/rump_syscalls.h. A wrap-

per which takes care of arranging the function parameters into the args structure
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off_t

rump___sysimpl_lseek(int fd, off_t offset, int whence)

{

register_t retval[2] = {0, 0};

int error = 0;

off_t rv = -1;

struct sys_lseek_args callarg;

SPARG(&callarg, fd) = fd;

SPARG(&callarg, PAD) = 0;

SPARG(&callarg, offset) = offset;

SPARG(&callarg, whence) = whence;

error = rsys_syscall(SYS_lseek, &callarg, sizeof(callarg), retval);

rsys_seterrno(error);

if (error == 0) {

if (sizeof(off_t) > sizeof(register_t))

rv = *(off_t *)retval;

else

rv = *retval;

}

return rv;

}

Figure 3.11: Call stub for rump_sys_lseek(). The arguments from the client
are marshalled into the argument structure which is supplied to the kernel entry
point. The execution of the system call is requested using the rsys_syscall()
routine. This routine invokes either a direct function call into the rump kernel or a
remote request, depending on if the rump kernel is local or remote, respectively.

is generated into sys/rump/librump/rumpkern/rump_syscalls.c — in our ex-

ample this arranging means moving the arguments that rump_sys_lseek() was

called with into the fields of struct sys_lseek_args. The wrapper for lseek is

presented in Figure 3.11. The name of the wrapper in the illustration does not

match rump_sys_lseek() but the reference will be correctly translated by an alias

in the rump system call header. We will not go into details, except to say that the

reason for it is to support compatibility system calls. For interested parties, the

details are available in the rump_syscalls.h header file.
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The same wrapper works both for local and remote clients. For a local client,

rsys_syscall() does a function call into the rump kernel, while for a remote client

it invokes a remote procedure call so as to call the rump kernel. Remote clients are

discussed in more detail in Section 3.12. In both cases, the implementation behind

rsys_syscall() calls the rump kernel entry and exit routines.

While modifying the makesyscalls script to generate prototypes and wrappers, we

ran into a number of unexpected cases:

1. Almost all system calls return -1 (or NULL) in case of an error and set the

errno variable to indicate which error happened. However, there are excep-

tions. For example, the posix_fadvise() call is specified to return an error

number and not to adjust errno. In libc this discrepancy between error vari-

able conventions is handled by a field in the Makefile which autogenerates

syscall stubs. For our purposes of autogeneration, we added a NOERR flag to

syscalls.master. This flag causes the generator to create a stub which does

not set errno, much like what the libc build process does.

2. Some existing software looks only at errno instead of the system call’s return

value. Our initial implementation set errno only in case the system call

returned failure. This implementation caused such software to not function

properly and we adjusted errno to always be set to reflect the value from

the latest call.

3. System calls return three values from the kernel: an integer and an array

containing two register-size values (the register_t *rv parameter). In the

typical case, the integer carries errno and rv[0] carries the return value. In

almost all cases the second element of the register vector can be ignored. The

first exception to this rule is the system call pipe(int fildes[2]), which

returns two file descriptors from the kernel: one in rv[0] and the other in

rv[1]. We handle pipe() as a special case in the generator script.
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[ .... ]

2194: e8 fc ff ff ff call 2195 <rump___sysimpl_lseek+0x52>

2199: 85 db test %ebx,%ebx

219b: 75 0c jne 21a9 <rump___sysimpl_lseek+0x66>

219d: 8b 45 f4 mov 0xfffffff4(%ebp),%eax

21a0: 8b 55 f8 mov 0xfffffff8(%ebp),%edx

21a3: 83 c4 24 add $0x24,%esp

21a6: 5b pop %ebx

21a7: 5d pop %ebp

21a8: c3 ret

[ .... ]

Figure 3.12: Compile-time optimized sizeof() check. The assembly of the
generated code compiled for i386 is presented.

4. The second exception to the above is the lseek() call on 32bit architectures.

The call returns a 64bit off_t 6 with the low bits occupying one register and

the high bits the other one. Since NetBSD supports all combinations of 32bit,

64bit, little endian and big endian architectures, care had to be taken to have

the translation from a two-element register_t vector to a variable work for

all calls on all architectures. We use a compile-time check for data type sizes

and typecast accordingly. To see why the check is required, consider the

following. If the typecast is never done, lseek breaks on 32bit architectures.

If the typecast to the return type is done for all calls, system calls returning

an integer break on 64bit big-endian architectures.

The above is not the only way to solve the problem. The makesyscalls.sh

script detects 64bit return values and sets the SYCALL_RET_64 flag in a system

call’s description. We could have hooked into the facility and created a special

wrapper for lseek without the “if (sizeof())” clause. The compiled code

is the same for both approaches (Figure 3.12), so the choice is a matter of

taste instead of runtime performance.

6 off_t is always 64bit on NetBSD instead of depending on the value of _FILE_OFFSET_BITS
which used on for example Linux and Solaris.
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5. Some calling conventions (e.g. ARM EABI) require 64bit parameters to be

passed in even numbered registers. For example, consider the lseek call.

The first parameter is an integer and is passed to the system call in regis-

ter 0. The second parameter is 64bit, and according to the ABI it needs to

be passed in registers 2+3 instead of registers 1+2. To ensure the align-

ment constraint matches in the kernel, the system call description table

syscalls.master contains padding parameters. For example, lseek is defined

as lseek(int fd, int pad, off_t offset, int whence). Since “pad”

is not a part of the application API, we do not want to include it in the

rump kernel system call signature. However, we must include padding in

the struct sys_lseek_args parameter which is passed to the kernel. We

solved the issue by first renaming all pad parameters to the uppercase “PAD”

to decrease the possibility of conflict with an actual parameter called “pad”.

Then, we modified makesyscalls.sh to ignore all parameters named “PAD” for

the application interface side.

A possibility outside of the scope of this work is to examine if the libc system call

stubs and prototypes can now be autogenerated from syscalls.master instead of

requiring separate code in the NetBSD libc Makefiles and system headers.

3.6.2 vnode Interface

The vnode interface is a kernel internal interface. The vnode interface routines take a

vnode object along with other parameters, and call the respective method of the file

system associated with the vnode. For example, the interface for reading is the fol-

lowing: int VOP_READ(struct vnode *, struct uio *, int, kauth_cred_t);

if the first parameter is a pointer to a FFS vnode, the call will be passed to the FFS

driver.
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int

RUMP_VOP_READ(struct vnode *vp, struct uio *uio, int ioflag, struct kauth_cred *cred)

{

int error;

rump_schedule();

error = VOP_READ(vp, uio, ioflag, cred);

rump_unschedule();

return error;

}

Figure 3.13: Implementation of RUMP_VOP_READ(). The backend kernel call
is wrapped around the rump kernel entrypoint and exitpoint.

The rump vnode interface exports the vnode interfaces to rump kernel clients. The

intended users are microkernel file servers which use rump kernels as backends. The

benefits for exporting this interface readily are the ones we listed in the beginning of

this section: a prototype for client code and automated entry/exit point handling.

The wrappers for the vnode interface are simpler than those of the system call

interface. This simplicity is because there is no need translate parameters and we

can simply pass them on to the kernel internal interface as such. To distinguish

between the internal implementation and the rump application interface, we prefix

rump client vnode interfaces with RUMP_.

The kernel vnode interface implementations and prototypes are autogenerated from

the file sys/kern/vnode_if.src by sys/kern/vnode_if.sh. We made the script

to generate our prototypes into sys/rump/include/rump/rumpvnode_if.h and

wrapper functions into sys/rump/librump/rumpvfs/rumpvnode_if.c. An exam-

ple result showing the RUMP_VOP_READ() interface is presented in Figure 3.13. The

VOP_READ() routine called by the wrapper is the standard implementation which is

extracted into a rump kernel from sys/kern/vnode_if.c.
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int

rump_pub_lwproc_rfork(int arg1)

{

int rv;

rump_schedule();

rv = rump_lwproc_rfork(arg1);

rump_unschedule();

return rv;

}

Figure 3.14: Application interface implementation of lwproc rfork().
The backend kernel call is wrapped around the rump kernel entrypoint and exitpoint.

3.6.3 Interfaces Specific to Rump Kernels

Some interfaces are available only in rump kernels, for example the lwp/process

context management interfaces (manual page rump lwproc.3 ). In a similar fashion

to other interface classes we have discussed, we supply autogenerated prototypes

and wrappers.

The application interface names are prefixed with rump_pub_ (shorthand for public).

The respective internal interfaces are prefixed rump_. As an example, we present

the wrapper for rump_pub_lwproc_rfork() in Figure 3.14. The public interface

wraps the internal interface around the entrypoint and exitpoint.

The master files for rump kernel interfaces are contained in the subdirectory of each

faction in an .ifspec file. The script sys/rump/librump/makeifspec.sh analyzes

this file and autogenerates the prototypes and wrappers.

Additionally, there exist bootstrap interfaces which can be called only before the

rump kernel is bootstrapped. An example is rump_boot_sethowto() which sets the
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boothowto variable. Since there is no virtual CPU to schedule before bootstrap,

no entry/exit wrappers are necessary. These bootstrap interfaces provided as non-

generated prototypes in sys/rump/include/rump/rump.h.

3.7 Rump Kernel Root File System

Full operating systems require a root file system with persistent storage for files such

as /bin/ls and /etc/passwd. A rump kernel does not inherently require such files.

This relaxed requirement is because a rump kernel does not have a default userspace

and because client binaries are executed outside of the rump kernel. However,

specific drivers or clients may require file system support for example to open a

device, load firmware or access a file system image. In some cases, such as for

firmware files and file system images, it is likely that the backing storage for the

data to be accessed resides on the host.

We explicitly want to avoid mandating the association of persistent storage with a

rump kernel because the storage image requires setup and maintenance and would

hinder especially one-time invocations. It is not impossible to store the file system

hierarchy and data required by a specific rump kernel instance on persistent storage.

We are merely saying it is not required.

A file system driver called rumpfs was written. It is implemented in the source mod-

ule sys/rump/librump/rumpvfs/rumpfs.c. Like tmpfs, rumpfs is an in-memory

file system. Unlike tmpfs, which is as fast and as complete as possible, rumpfs is as

lightweight as possible. Most rumpfs operations have only simple implementations

and support for advanced features such as rename and NFS export has been omit-

ted. If these features are desired, an instance of tmpfs can be mounted within the

rump kernel when required. The lightweight implementation of rumpfs makes the

compiled size 3.5 times smaller than that of tmpfs.
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By convention, file system device nodes are available in /dev. NetBSD does not

feature a device file system which dynamically creates device nodes based on the

drivers in the kernel. A standard installation of NetBSD relies on precreated de-

vice nodes residing on persistent storage. We work around this issue in two ways.

First, during bootstrap, the rump kernel VFS faction generates a selection of com-

mon device nodes such as /dev/zero. Second, we added support to various driver

attachments to create device driver nodes when the drivers are attached. These

adjustments avoid the requirement to have persistent storage mounted on /dev.

3.7.1 Extra-Terrestrial File System

The Extra-Terrestrial File System (etfs) interface provides a rump kernel with access

to files on the host. The etfs (manual page rump etfs.3 ) interface is used to register

host file mappings with rumpfs. Fundamentally, the purpose of etfs is the same

as that of a hostfs available on most full system virtualization solutions. Unlike a

hostfs, which typically mounts a directory from the host, etfs is oriented towards

mapping individual files. The interface allows the registration of type and offset

translators for individual host files; a feature we will look at more closely below.

In addition, etfs only supports reading and writing files and cannot manipulate the

directory namespace on the host. This I/O-oriented approach avoids issues such as

how to map permissions on newly created hostfs files. Furthermore, it makes etfs

usable also on hosts which do not support a directory namespace.

The mapping capability of etfs is hooked up to the lookup operation within rumpfs.

Recall, a lookup operation for a pathname will produce an in-memory file system

structure referencing the file behind that pathname. If the pathname under lookup

consists of a registered etfs key, the in-memory structure will be tagged so that

further I/O operations, i.e. read and write, will be directed to the backing file on

the host.
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Due to how etfs is implemented as part of the file system lookup routine, the mapped

filenames is not browseable (i.e. readdir). However, it does not affect the intended

use cases such as access to firmware images, since the pathnames are hardcoded into

the kernel.

In addition to taking a lookup key and the backing file path, the etfs interface

takes an argument controlling how the mapped path is presented inside the rump

kernel. The following three options are valid for non-directory host files: regular file,

character device or block device. The main purpose of the type mapping feature is

to be able to present a regular file on the host as a block device in the rump kernel.

This mapping addresses an implementation detail in the NetBSD kernel: the only

valid backends for disk file systems are block devices.

Assuming that the host supports a directory namespace, it is also possible to map

directories. There are two options: a single-level mapping or the mapping of the

whole directory subtree. For example, if /rump_a from the host is directory mapped

to /a in the rump kernel, it is possible to access /rump_a/b from /a/b in both single-

level and subtree mappings. However, /rump_a/b/c is visible at /a/b/c only if the

directory subtree was mapped. Directory mappings do not allow the use of the

type and offset/size translations, but allow mappings without having to explicitly

add them for every single file. The original use case for the directory mapping

functionality was to get the kernel module directory tree from /stand on the host

mapped into the rump kernel namespace so that a rump kernel could read kernel

module binaries from the host.

3.7.2 External Storage

Another special feature of rumpfs is the possibility to attach external storage to

regular files. This external storage is provided in the form of memory, and is made



115

available via files in a zero-copy fashion. The intent is to allow rump kernels to

provide file content without having to rely on the presence of any block I/O device.

The content itself can be linked into the data segment of the binary at the time

that the binary is built. External storage is attached by opening a writable file

and calling rump_sys_ioctl(fd, RUMP_FCNTL_EXTSTORAGE_ADD, ...). Adding

external storage is limited to local clients, as pointers provided by remote clients are

meaningless in this context.

3.8 Attaching Components

A rump kernel’s initial configuration is defined by the components that are linked in

when the rump kernel is bootstrapped. At bootstrap time, the rump kernel needs

to detect which components were included in the initial configuration and attach

them. If drivers are loaded at runtime, they need to be attached to the rump kernel

as well.

In this section we go over how loading and attaching components in a rump kernel

is similar to a regular kernel and how it is different. The host may support static

linking, dynamic linking or both. We include both alternatives in the discussion.

There are two methods for attaching components, called kernel modules and rump

components. We will discuss both and point out the differences. We start the

discussion with kernel modules.

3.8.1 Kernel Modules

In NetBSD terminology, a driver which can be loaded and unloaded at runtime is

said to be modular. The loadable binary image containing the driver is called a

kernel module, or module for short. We adopt the terminology for our discussion.
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The infrastructure for supporting modular drivers on NetBSD has been available

since NetBSD 5.0 7. Some drivers offered by NetBSD are modular, and others are

being converted. A modular driver knows how to attach to the kernel and detach

from the kernel both when it is statically included and when it is loaded at runtime.

A non-modular driver does not know.

NetBSD divides kernel modules into three classes depending on their source and

when they are loaded. These classes are summarized in Table 3.3. Builtin modules

are linked into the kernel image when the kernel is built. The bootloader can load

kernel modules into memory at the same time as it loads the kernel image. These

modules must later be linked by the kernel during the bootstrap process. Finally,

at runtime modules must be both loaded and linked by the kernel.

source loading linking initiated by

builtin external external external toolchain

bootloader external kernel bootloader

file system kernel kernel syscall, kernel autoload

Table 3.3: Kernel module classification. These categories represent the types
of kernel modules that were readily present in NetBSD independent of this work.

The fundamental steps of loading a kernel module on NetBSD at runtime are:

1. The kernel module is loaded into the kernel’s address space.

2. The loaded code is linked with the kernel’s symbol table.

3. The module’s init routine is run. This routine informs other kernel subsys-

tems that a new module is present. For example, a file system module at a

7 NetBSD 5.0 was released in 2009. Versions prior to 5.0 provided kernel modules through
a different mechanism called Loadable Kernel Modules (LKM ). The modules available from 5.0
onward are incompatible with the old LKM scheme. The reasons why LKM was retired in favor
of the new system are available from mailing list archives and beyond the scope of this document.
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minimum informs the VFS layer that it is possible to mount a new type of

file system.

After these steps have been performed, code from the newly loaded kernel module

can be used like it had been a part of the original monolithic kernel build. Unloading

a kernel module is essentially reversing the steps.

We divide loading a module into a rump kernel in two separate cases depending

on a pivot point in the execution: the bootstrapping of the rump kernel by calling

rump_init(). The officially supported way of including modules in rump kernels

is to have them loaded and linked (i.e. steps 1+2) before rump_init() is called.

This may be done either by linking them into a static image, or, on hosts where

dynamic linking is supported, loading and linking the component after main() is

called but before rump_init() is called. Modules loaded that way are essentially

builtin modules.

We also point out that on some hosts, especially userspace, it is possible to load

components after rump_init() by using the host dynamic linker and then calling

rump_pub_module_init(). However, will we not discuss the latter approach in this

document.

init/fini

A NetBSD kernel module defines an init routine (“modcmd_init”) and a fini routine

(“modcmd_fini”) using the MODULE() macro. The indicated routines attach and de-

tach the module with respect to the kernel. The MODULE() macro creates a structure

(struct modinfo) containing that information. We need to locate the structure at

runtime so that the init routine can be run to complete module loading step “3”.
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The method of locating the modinfo structures depends on the platform. There are

two functionally equivalent options, but they have different platform requirements.

1. A pointer to the structure is placed into a .rodata section called modules. At

linktime, the linker generates __start_section and __end_section sym-

bols. At runtime, all present modules can be found by traversing pointers in

the memory between these two symbols. Notably, not all linkers can be co-

erced into generating these symbols. Furthermore, the scheme is not directly

compatible with dynamic linkers because a dynamic linker cannot produce a

global pair of such symbols – consider the scenario where libraries are loaded

at runtime. Therefore, if this scheme is to be used with dynamic linking,

each shared object must be examined separately.

2. The structure is located via __attribute__((__constructor__)). We can-

not make any assumptions about when the constructor runs, and therefore

the constructor only places the structure on a linked list. This linked list is

traversed when the rump kernel boots. The constructor is a static function

generated by the MODULE() macro. Notably, this scheme requires platform

support for running constructors.

The NetBSD Kernel Linker

Using the NetBSD kernel linker means loading the module from the file system after

rump_init() and letting the code in sys/kern/subr_kobj.c handle linking. This

linker is included as part of the base of a rump kernel. The in-kernel linker supports

only relocatable objects (with ELF, type ET_REL), not shared libraries.

Since linking is performed in the [rump] kernel, the [rump] kernel must be aware of

the addresses of the symbols it exports. For example, for the linker to be able to sat-



119

isfy an unresolved symbol to kmem_alloc(), it must know where the implementation

of kmem_alloc() is located in that particular instance. In a regular kernel the initial

symbol table is loaded at bootstrap time by calling the ksyms_addsyms_explicit()

or mostly equivalent ksyms_addsyms_elf() routine.

In the current rumpuser hypercall revision, the symbol table is populated by the

rumpuser_dl_bootstrap() hypercall, which is always called during rump kernel

bootstrap. For the next hypercall revision, the plan is to make symbol loading

a just-in-time operation which is called only if the in-kernel linker is used. This

change is planned because loading the symbol table – and in dynamically linked

environments harvesting it for loading – is a time-consuming operating. Based on

experience, the use of the in-kernel linker is a rare operation, and unconditionally

populating the symbol table is therefore wasteful.

The in-kernel linker itself works the same way as in a regular kernel. Loading

a module can be initiated either by a client by using the modctl() system call.

Notably, the kernel module is loaded from the rump kernel file system namespace,

so only rump kernels with the file system faction can support the in-kernel linker.

3.8.2 Modules: Supporting Standard Binaries

By a binary kernel module we mean a kernel module object file built for the regular

monolithic kernel and shipped with NetBSD in /stand/$arch/release/modules.

Support for binary kernel modules means these objects can be loaded and linked

into a rump kernel and the drivers used. This support allows a rump kernel to use

drivers for which source code is not available. Short of a full virtual machine (e.g.

QEMU), rump kernels are the only form of virtualization in NetBSD capable of

using binary kernel modules without recompilation.
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There are two requirements for using binary kernel modules to be possible. First, the

kernel module must not contain any CPU instructions which cannot be executed

in unprivileged mode. As we examined in Section 3.2.2, drivers do not contain

privileged instructions. Second, the rump kernel and the host kernel must share the

same binary interface (ABI).

In practical terms, ABI compatibility means that the rump kernel code does not

provide its own headers to override system headers and therefore all the data type

definitions are the same for a regular kernel and a rump kernel. Problematic sce-

narios arise because, mainly due to historical reasons, some architecture specific

kernel interfaces are provided as macros or inline functions. This approach does not

produce a clean interface boundary, as at least part of the implementation is leaked

into the caller. From our perspective, this leakage means that providing an alternate

interface is more difficult.

Shortly before we started investigating kernel module compatibility, some x86 CPU

family headers were changed from inline/macro definitions to function interfaces by

another NetBSD developer. The commit message8 states that the change was done

to avoid ABI instability issues with kernel modules. This change essentially solved

our problem with inlines and macros. It also reinforced our belief that the anykernel

architecture follows naturally from properly structured code.

A remaining example of macro use in an interface is the pmap interface. The

pmap is the interface to the architecture dependent memory management features.

The interface specification explicitly allows some parts of the interface to be imple-

mented as macros. Figure 3.15 illustrates how the x86 pmap header overrides the

MI function interface for pmap_is_modified(). To be x86 kernel ABI compati-

ble we provide an implementation for pmap_test_attrs() in the rump kernel base

(sys/rump/librump/rumpkern/arch/i386/pmap_x86.c).

8 revision 1.146 of sys/arch/i386/include/cpu.h
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sys/arch/x86/include/pmap.h:

#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)

sys/uvm/uvm pmap.h (MI definition):

#if !defined(pmap_is_modified)

bool pmap_is_modified(struct vm_page *);

#endif

Figure 3.15: Comparison of pmap_is_modified definitions. The definition
specific to the i386 port causes a dereference of the symbol pmap_test_attrs(),
while for all ports which do not override the definition, pmap_is_modified() is
used.

Due to the MD work required, the kernel module ABI support is currently restricted

to the AMD64 and i386 architectures. Support for AMD64 has an additional re-

striction which derives from the addressing model used by kernel code on AMD64.

Since most AMD64 instructions accept only 32bit immediate operands, and since

an OS kernel is a relatively small piece of software, kernel code is compiled with a

memory model which assumes that all symbols are within the reach of a 32bit offset.

Since immediate operands are sign extended, the values are correct when the kernel

is loaded in the upper 2GB of AMD64’s 64bit address space [32]. This address range

is not available to user processes at least on NetBSD. Instead, we used the lowest

2GB — the lowest 2GB is the same as the highest 2GB without sign-extension. As

long as the rump kernel and the binary kernel module are loaded into the low 2GB,

the binary kernel module can be used as part of the rump kernel.

For architectures which do not support the standard kernel ABI, we provide override

machine headers under the directory sys/rump/include/machine. This directory

is specified first in the include search path for rump kernel compilation, and therefore

headers contained in there override the NetBSD MD headers. Therefore, definitions

contained in the headers for that directory override the standard NetBSD defini-

tions. This way we can override problematic definitions in machine dependent code.
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sys/arch/x86/include/cpu.h:

#define curlwp x86_curlwp()

sys/arch/sparc64/include/{cpu,param}.h (simplified for presentation):

#define curlwp curcpu()->ci_curlwp

#define curcpu() (((struct cpu_info *)CPUINFO_VA)->ci_self)

#define CPUINFO_VA (KERNEND+0x018000)

#define KERNEND 0x0e0000000 /* end of kernel virtual space */

Figure 3.16: Comparison of curlwp definitions. The i386 port definition
results in a function symbol dereference, while the sparc64 port definition causes a
dereference to an absolute memory address.

An example of what we consider problematic is SPARC64’s definition of curlwp,

which we previously illustrated in Figure 3.16. This approach allows us to support

rump kernels on all NetBSD architectures without having to write machine spe-

cific counterparts or edit the existing MD interface definitions. The only negative

impact is that architectures which depend on override headers cannot use binary

kernel modules and must operate with the components compiled specifically for

rump kernels.

Lastly, the kernel module must be converted to the rump kernel symbol namespace

(Section 3.2.1) before linking. This conversion can be done with the objcopy tool

similar to what is done when components are built. However, using objcopy would

require generating another copy of the same module file. Instead of the objcopy

approach, we modified the module load path in sys/kern/subr_kobj.c to contain

a call to kobj_renamespace() after the module has been read from storage but

before it is linked. On a regular kernel this interface is implemented by a null

operation, while in a rump kernel the call is implemented by a symbol renaming

routine in sys/rump/librump/rumpkern/kobj_rename.c. Since the translation is

done in memory, duplicate files are not required. Also, it enables us to autoload

binary modules directly from the host, as we describe next.
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3.8.3 Rump Component Init Routines

In the previous section we discussed the attachment of drivers that followed the

kernel module framework. Now we discuss the runtime attachment of drivers that

have not yet been converted to a kernel module, or code that applies to a only rump

kernel environment.

If a driver is modular, the module’s init routine should be preferred over any rump

kernel specific routines since the module framework is more generic. However, a

module’s init routine is not always enough for a rump kernel. Consider the fol-

lowing cases. On a regular system, parts of the kernel are configured by userspace

utilities. For example, the Internet address of the loopback interface (127.0.0.1)

is configured by the rc scripts instead of by the kernel. Another example is the

creation of device nodes on the file system under the directory /dev. NetBSD does

not have a dynamic device file system and device nodes are pre-created with the

MAKEDEV script. Since a rump kernel does not have an associated userland or a

persistent root file system, these configuration actions must be performed by the

rump kernel itself. A rump component init routine may be created to augment the

module init routine.

By convention, we place the rump component init routines in the component’s source

directory in a file called $name_component.c, e.g. bpf_component.c. To define an

init routine, the component should use the RUMP_COMPONENT() macro. The use of

this macro serves the same purpose as the MODULE() macro and ensures that the

init routine is automatically called during rump kernel bootstrap.

The RUMP_COMPONENT() macro takes as arguments a single parameter indicating

when the component should be initialized with respect to other components. This

specifier is required because of interdependencies of components that the NetBSD

kernel code imposes. For example, the networking domains must be attached before
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interfaces can be configured. It is legal (and sometimes necessary) for components

to define several init routines with different configuration times. The init level

parameters are listed in Table 3.4 in order of runtime initialization. Notably, the

multitude of networking-related initialization levels conveys the current status of the

NetBSD TCP/IP stack: it is not yet modular — a modular TCP/IP stack would

encode the cross-dependencies in the drivers themselves.

An example of a component file is presented in Figure 3.17. The two routines spec-

ified in the component file will be automatically executed at the appropriate times

during rump kernel bootstrap so as to ensure that any dependent components have

been initialized before. The full source code for the file can be found from the source

tree path sys/rump/net/lib/libnetinet/netinet_component.c. The userspace

rc script etc/rc/network provides the equivalent functionality in a regular mono-

lithic NetBSD setup.

3.9 I/O Backends

I/O backends allow a rump kernel to access I/O resources on the host and beyond.

Access to I/O devices always stems from hypercalls, and like we learned in Sec-

tion 3.2.3, hypercalls for accessing I/O devices are specific to the bus or device. For

example, accessing a PCI NIC is completely different from accessing /dev/tap.

In this section we will discuss the implementation possibilities and choices for the I/O

backends for networking and file systems (block devices) in userspace. Other related

sections are the ones which discuss USB via ugen (Section 3.10) and PCI on the

Rumprun unikernel (Section 4.2.5). There is also support for accessing PCI devices

from userspace available at http://repo.rumpkernel.org/pci-userspace, but

we do not discuss that implementation in this book.

http://repo.rumpkernel.org/pci-userspace
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level purpose

RUMP_COMPONENT_KERN base initialization which is done before any

factions are attached

RUMP_COMPONENT_VFS VFS components

RUMP_COMPONENT_NET basic networking, attaching of networking

domains

RUMP_COMPONENT_NET_ROUTE routing, can be done only after all domains

have attached

RUMP_COMPONENT_NET_IF interface creation (e.g. lo0)

RUMP_COMPONENT_NET_IFCFG interface configuration, must be done after

interfaces are created

RUMP_COMPONENT_DEV device components

RUMP_COMPONENT_DEV_AFTERMAINBUS device components run which after the device

tree root (mainbus) has attached

RUMP_COMPONENT_KERN_VFS base initialization which is done after the

VFS faction has attached, e.g. base compo-

nents which do VFS operations

RUMP_COMPONENT_SYSCALL establish non-modular syscalls which are

available in the factions present

RUMP_COMPONENT_POSTINIT misc. components that attach right before

rump_init() returns

Table 3.4: Component classes. The RUMP_COMPONENT facility allows to specify
component initialization at rump kernel bootstrap time. Due to interdependencies
between subsystems, the component type specifies the order in which components
are initialized. The order of component initialization is from top to bottom. The
initializers designated DEV, NET and VFS are run only if the respective faction is
present.
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RUMP_COMPONENT(RUMP_COMPONENT_NET)

{

DOMAINADD(inetdomain);

[ omitted: attach other domains ]

}

RUMP_COMPONENT(RUMP_COMPONENT_NET_IFCFG)

{

[ omitted: local variables ]

if ((error = socreate(AF_INET, &so, SOCK_DGRAM, 0, curlwp, NULL)) != 0)

panic("lo0 config: cannot create socket");

/* configure 127.0.0.1 for lo0 */

memset(&ia, 0, sizeof(ia));

strcpy(ia.ifra_name, "lo0");

sin = (struct sockaddr_in *)&ia.ifra_addr;

sin->sin_family = AF_INET;

sin->sin_len = sizeof(struct sockaddr_in);

sin->sin_addr.s_addr = inet_addr("127.0.0.1");

[ omitted: define lo0 netmask and broadcast address ]

in_control(so, SIOCAIFADDR, &ia, lo0ifp, curlwp);

soclose(so);

}

Figure 3.17: Example: selected contents of netinet_component.c. The
inet domain is attached in one constructor. The presence of the domain is required
for configuring an inet address for lo0. The interface itself is provided and created
by the net component (not shown).
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Figure 3.18: Networking options for rump kernels. The virtif facility
provides a full networking stack by interfacing with, for example, the host’s tap
driver (depicted). The shmem facility uses interprocess shared memory to provide
an Ethernet-like bus to communicate between multiple rump kernels on a single
host without requiring elevated privileges on the host. The sockin facility provides
unprivileged network access for all in-kernel socket users via the host’s sockets.

3.9.1 Networking

The canonical way an operating system accesses the network is via an interface

driver. The driver is at bottom of the network stack and has the capability for

sending and receiving raw networking packets. On most general purpose OSs, send-

ing and receiving raw network data is regarded as a privileged operation. Rather,

unprivileged programs have only the capability to send and receive data via the

sockets interfaces instead of deciding the full contents of a networking packet.

We have three distinct cases we wish to support in rump kernels. The cases are

illustrated in Figure 3.18 and discussed next.
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1. full network stack with raw access to the host’s network. In this

case the rump kernel can send and receive raw network packets. An example

of when this type of access is desired is an IP router. Elevated privileges

are required, as well as selecting a host device through which the network is

accessed.

2. full network stack without access to the host’s network. In this use

case we are interested in being able to send raw networking packets between

rump kernels, but are not interested in being able to access the network on

the host. Automated kernel driver testing in userspace is the main use case

for this type of setup. We can fully use all of the networking stack layers, with

the exception of the physical device driver, on a fully unprivileged account

without any prior host resource allocation.

3. unprivileged use of host’s network for sending and receiving data.

In this case we are interested in the ability to send and receive data via

the host’s network, but do not care about the IP address associated with

our rump kernel. Though sending data via the host’s network stack requires

that the host has a properly configured network stack, we argue that this

assumption is commonly true.

An example use case is the NFS client driver: we wish to isolate and virtualize

the handling of the NFS protocol (i.e. the file system portion). However, we

still need to transmit the data to the server. Using a full networking stack

would not only require privileges, but also require configuring the networking

stack (IP address, etc.). Using the host’s stack to send and receive data

avoids these complications.

This option is directed at client side services, since all rump kernel instances

will share the host’s port namespace, and therefore it is not possible to start

multiple instances of the same service.
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# ifconfig tap0 create

# ifconfig tap0 up

# ifconfig bridge0 create

# brconfig bridge0 add tap0 add re0

# brconfig bridge0 up

Figure 3.19: Bridging a tap interface to the host’s re0. The allows the tap
device to send and receive network packets via re0.

Raw network access

The commonly available way for accessing an Ethernet network from a virtualized

TCP/IP stack running in userspace is to use the tap driver with the /dev/tap

device node. The tap driver presents a file type interface to packet networking,

and raw Ethernet frames can be received and sent from an open device node using

the read() and write() calls. If the tap interface on the host is bridged with

a hardware Ethernet interface, access to a physical network is available since the

hardware interface’s traffic will be available via the tap interface as well. This

tap/bridge scenario was illustrated in Figure 3.18.

The commands for bridging a tap interface on NetBSD are provided in Figure 3.19.

Note that IP addresses are not configured for the tap interface on the host.

The virt (manual page virt.4 ) network interface driver we implemented uses hyper-

calls to open the tap device on the host and to transmit packets via it. The source

code for the driver is located in sys/rump/net/lib/libvirtif.

Notably, while the tap method is near-ubiquitous and virtualizes the underlying

network device for multiple consumers, it is not a high-performance option. At

http://repo.rumpkernel.org/ we host high-performance network driver imple-

mentations for DPDK and netmap [50] backends. While we will not discuss those

http://repo.rumpkernel.org/
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implementations in this book, we want to note that the rump kernel side of the

driver is shared between the one use for tap (i.e. virt). The difference comes from

alternative hypercall implementations.

Full network stack without host network access

Essentially, we need an unprivileged Ethernet-like bus. All interfaces which are

attached to the same bus will be able to talk to each other directly, while nodes

with interfaces on other buses may be reached via routers.

One option for implementing packet distribution is to use a userland daemon which

listens on a local domain socket [16]. The client kernels use hypercalls to access

the local domain socket of the daemon. The daemon takes care of passing Ethernet

frames to the appropriate listeners. The downside of the daemon is that there is an

extra program to install, start and stop. Extra management is in conflict with the

goals of rump kernels, and that is why we chose another implementation strategy.

We use shared memory provided by a memory mapped file as the network bus. The

filename is the bus handle — all network interfaces on the same bus use the same

filename. The shmif driver (manual page shmif.4 ) in the rump kernel accesses the

bus. Each driver instance accesses one bus, so it is possible to connect a rump

kernel to multiple different busses by configuring multiple drivers. Since all nodes

have full access to bus contents, the approach does not protect against malicious

nodes. As our main use case is testing, this lack of protection is not an issue. Also,

the creation of a file on the host is not an issue, since testing is commonly carried

out in a working directory which is removed after a test case has finished executing.

The shmif driver memory maps the file and uses it as a ring buffer. The header

contains pointers to the first and last packet and a generation number, along with
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bus locking information. The bus lock is a spinlock based on cross-process shared

memory. A downside to this approach is that if a rump kernel crashes while holding

the bus lock, the whole bus will halt. Since the main purpose of shmif is testing,

we do not consider the bus halting a serious flaw.

Sending a packet requires locking the bus and copying the contents of the packet to

the buffer. Receiving requires knowing when to check for new packets. It is the job

of a hypercall to monitor the bus and wake up the receive side when the bus changes.

This monitoring is, for example, implemented by using the kqueue facility on BSD

and inotify on Linux. The receive side of the driver locks the bus and analyzes the

bus header. If there are new packets for the interface on question, the driver passes

them up to the IP layer.

An additional benefit of using a file is that there is always one ringbuffer’s worth of

traffic available in a postmortem situation. The shmif_dumpbus tool (manual page

shmif dumpbus.1 ) can be used to convert a busfile into the pcap format which the

tcpdump tool understands. This conversion allows running a post-mortem tcpdump

on a rump kernel’s network packet trace.

Unprivileged use of the host’s network in userspace

Some POSIX-hosted virtualization solutions such as QEMU and UML provide un-

privileged zero-configuration network access via a facility called Slirp [1]. Slirp is a

program which was popular during the dial-up era. It enables running a SLIP [52]

endpoint on top of a regular UNIX shell without a dedicated IP. Slirp works by

mapping the SLIP protocol to socket API calls. For example, when an application

on the client side makes a connection, Slirp processes the SLIP frame from the client

and notices a TCP SYN is being sent. Slirp then opens a socket and initiates a TCP

connection on it. Note that both creating a socket and opening the connection are
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performed at this stage. This bundling happens because opening the socket in the

application does not cause network traffic to be sent, and therefore Slirp is unaware

of it.

Since the host side relies only on the socket API, there is no need to perform network

setup on the host. Furthermore, elevated privileges are not required for the use of

TCP and UDP (except for opening ports <1024). On the other hand, ICMP is

not available since using it requires access to raw sockets on the host. Also, any

IP address configured on the guest will be purely fictional, since socket traffic sent

from Slirp will use the IP address of the host Slirp is running on.

Since Slirp acts as the peer for the guest’s TCP/IP stack, it requires a complete

TCP/IP stack implementation. The code required for complete TCP/IP processing

is sizeable: over 10,000 lines of code.

Also, extra processing power is required, since the traffic needs to be converted mul-

tiple times: the guest converts the application data to IP datagrams, Slirp converts

it back into data and socket family system call parameters, and the host’s TCP/IP

stack converts input from Slirp again to IP datagrams.

Our implementation is different from the one described above. Instead of doing

transport and network layer processing in the rump kernel, we observe that re-

gardless of what the guest does, processing will be done by the host. At best, we

would need to undo what the guest did so that we can feed the payload data to the

host’s sockets interface. Instead of using the TCP/IP protocol suite in the rump

kernel, we redefine the inet domain, and attach our implementation at the protocol

switch layer [58]. We call this new implementation sockin to reflect it being socket

inet. The attachment to the kernel is illustrated in Figure 3.20. Attaching at the

domain level means communication from the kernel’s socket layer is done with usr-

req ’s, which in turn map to the host socket API in a very straightforward manner.
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DOMAIN_DEFINE(sockindomain);

const struct protosw sockinsw[] = {

{

.pr_type = SOCK_DGRAM, /* UDP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_UDP,

.pr_flags = PR_ATOMIC | PR_ADDR,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,

},{

.pr_type = SOCK_STREAM, /* TCP */

.pr_domain = &sockindomain,

.pr_protocol = IPPROTO_TCP,

.pr_flags = PR_CONNREQUIRED | PR_WANTRCVD | PR_LISTEN | PR_ABRTACPTDIS,

.pr_usrreq = sockin_usrreq,

.pr_ctloutput = sockin_ctloutput,

}};

struct domain sockindomain = {

.dom_family = PF_INET,

.dom_name = "socket_inet",

.dom_init = sockin_init,

.dom_externalize = NULL,

.dom_dispose = NULL,

.dom_protosw = sockinsw,

.dom_protoswNPROTOSW = &sockinsw[__arraycount(sockinsw)],

.dom_rtattach = rn_inithead,

.dom_rtoffset = 32,

.dom_maxrtkey = sizeof(struct sockaddr_in),

.dom_ifattach = NULL,

.dom_ifdetach = NULL,

.dom_ifqueues = { NULL },

.dom_link = { NULL },

.dom_mowner = MOWNER_INIT("",""),

.dom_rtcache = { NULL },

.dom_sockaddr_cmp = NULL

};

Figure 3.20: sockin attachment. Networking domains in NetBSD are attached
by specifying a struct domain. Notably, the sockin family attaches a PF_INET
type family since it aims to provide an alternative implementation for inet sockets.
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For example, for PRU_ATTACH we call socket(), for PRU_BIND we call bind(), for

PRU_CONNECT we call connect(), and so forth. The whole implementation is 500

lines of code (including whitespace and comments), making it 1/20th of the size of

Slirp.

Since sockin attaches as the Internet domain, it is mutually exclusive with the regular

TCP/IP protocol suite. Furthermore, since the interface layer is excluded, the sockin

approach is not suitable for scenarios which require full TCP/IP processing within

the virtual kernel, e.g. debugging the TCP/IP stack. In such cases one of the other

two networking models should be used. This choice may be made individually for

each rump kernel instance.

3.9.2 Disk Driver

A disk block device driver provides storage medium access and is instrumental to

the operation of disk-based file systems. The main interface is simple: a request

instructs the driver to read or write a given number of sectors at a given offset.

The disk driver queues the request and returns. The request is handled in an order

according to a set policy, e.g. the disk head elevator. Once the request is complete,

the driver signals the kernel that the request has been completed. In case the caller

waits for the request to complete, the request is said to be synchronous, otherwise

asynchronous.

There are two ways to provide a disk backend: buffered and unbuffered. A buffered

backend stores writes to a buffer and flushes them to the backing storage later.

Notably, to maintain file system on-disk correctness, synchronous writes must still

be flushed to storage immediately. An unbuffered backend will always write to

storage immediately. Examples of these backend types are a regular file and a

character special device, respectively.
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There are three approaches to implementing the block driver hypercalls using stan-

dard userspace interfaces.

• Use read() and write() in caller context: this is the simplest method.

However, this method effectively makes all requests synchronous. Addition-

ally, this method blocks other read operations when read-ahead is being per-

formed.

• Asynchronous read/write: in this model the request is handed off to an

I/O thread. When the request has been completed, the I/O thread signals

completion.

A buffered backend must flush synchronously executed writes. The only

standard interface available for flushing is fsync(). However, it will flush all

buffered data before returning, including previous asynchronous writes. Non-

standard ranged interfaces such as fsync_range() exist, but they usually

flush at least some file metadata in addition the actual data causing extra

unnecessary I/O.

A userlevel write to an unbuffered backend goes directly to storage. The

system call will return only after the write has been completed. No flushing

is required, but since userlevel I/O is serialized on Unix, it is not possible to

issue another write before the first one finishes. This ordering means that a

synchronous write must block and wait until any earlier write calls have been

fully executed.

The O_DIRECT file descriptor flag causes a write on a buffered backend to

bypass cache and go directly to storage. The use of the flag also invalidates

the cache for the written range, so it is safe to use in conjunction with buffered

I/O. However, the flag is advisory. If conditions are not met, the I/O will

silently fall back to the buffer. The direct I/O method can therefore be used

only when it is certain that direct I/O applies.
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• Memory-mapped I/O: this method works only for regular files. The bene-

fits are that the medium access fastpath does not involve any system calls and

that the msync() system call can be portably used to flush ranges instead of

the whole memory cache.

The file can be mapped using windows. Windows provide two advantages.

First, files larger than the available VAS can be accessed. Second, in case of

a crash, the core dump is only increased by the size of the windows instead

of the size of the entire file. We found that the number of windows does not

have a significant performance impact; we default to 16 1MB windows with

LRU recycling.

The downside of the memory mapping approach is that to overwrite data, the

contents must first be paged in, then modified, and only after that written.

The pagein step is to be contrasted to explicit I/O requests, where it is

possible to decide if a whole page is being written, and if so, skip pagein

before write.

Of the above, we found that on buffered backends O_DIRECT works best. Ranged

syncing and memory mapped I/O have roughly equal performance and full syncing

performs poorly.

3.10 Hardware Devices: A Case of USB

A general purpose OS kernel USB driver stack may choose to export USB device

access to userspace via the USB generic driver, or ugen. After ugen attaches to

a USB bus node, it provides access to the attached hardware (i.e. not the entire

USB bus) from userspace via the /dev/ugen<n> device nodes and read/write/ioctl

calls. Providing access via a device node means that any entity on the host with

the appropriate privileges to access the device node may communicate with the
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hardware without having full access to the device registers. A key point is that

the USB protocol offered by ugen is essentially unchanged from the USB hardware

protocol. This protocol compatibility allows preexisting kernel drivers to use ugen

without protocol translation.

At the root of the USB bus topology is a USB host controller. It controls all traffic

on the USB bus. All device access on the bus is done through the host controller

using an interface called USBDI, or USB Driver Interface. The role of the host

controller, along with ugen, is a detail which makes USB especially suitable for

userspace drivers: we need to implement a host controller which maps USBDI to

the ugen device node instead of having to care about all bus details.

We implemented a host controller called ugenhc. When the kernel’s device autocon-

figuration subsystem calls the ugenhc driver to probe the device, the ugenhc driver

tries to open /dev/ugen on the host. If the open is successful, the host kernel has

attached a device to the respective ugen instance and ugenhc can return a successful

match. Next, the ugenhc driver is attached in the rump kernel, along with a USB

bus and a USB root hub. The root hub driver explores the bus to see which devices

are connected to it, causing the probes to be delivered first to ugenhc and through

/dev/ugen to the host kernel and finally to the actual hardware. The device driver

instance can be used from the rump kernel just like any other device driver, e.g.

USB network interfaces can be used by the networking stack to shuffle packets.

3.10.1 Conclusions of the USB Approach

The USB approach is not recommended for hooking device drivers to rump kernels.

To implement ugenhc, support for the USB protocol stack must already exist on the

host. Even though USB is supported by many hosts, the current implementation

of ugenhc is still NetBSD-specific. Furthermore, we found that though in theory
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access through /dev/ugen is safe, during development we were able to tickle the

host’s USB protocol stack in surprising ways causing host kernel panics. Supposedly,

this instability is caused by the compound effect of both the USB protocol stack

implementation being huge, and accessing it via /dev/ugen not being the frequently

exercised access path.

3.11 Microkernel Servers: Case Study with File Servers

In this section we investigate using rump kernels as microkernel style servers for file

systems. Our key motivation is to prevent a malfunctioning file system driver from

damaging the host kernel by isolating it in a userspace server.

The NetBSD framework for implementing file servers in userspace is called puffs [28].

We use puffs to attach the rump kernel file server to the host’s file system namespace.

Conceptually, after the file system has been mounted, the service works as follows: a

file system request is transported from the host kernel to the userspace server using

puffs. The server makes a local call into the rump kernel to service the request.

When servicing the request is complete, the response is returned to the host kernel

using puffs. The architecture of this solution is presented in Figure 3.21. It is worth

noting that a userlevel application is not the only possible consumer. Any VFS user,

such as an NFS server running in the host kernel, is a valid consumer in this model.

3.11.1 Mount Utilities and File Servers

Before a file system can be accessed, it must be mounted. Standard kernel file

systems are mounted with utilities such as mount_efs, mount_tmpfs, etc. These

utilities parse the command line arguments and call the mount() system call with

a file system specific argument structure built from the command line arguments.
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Figure 3.21: File system server. The request from the microkernel client is
transported by the host kernel to the rump kernel running providing the kernel file
system driver. Although only system calls are illustrated, page faults created by the
client may be handled by the server as well.

One typical way of invoking these utilities is to use the mount command with an

argument specifying the file system. For example, mount -t efs /dev/sd0e /mnt

invokes mount_efs to do the actual mounting.

Instead of directly calling mount(), our server does the following: we bootstrap a

rump kernel, mount the file system in the rump kernel, and attach this process as a

puffs server to the host. All of these tasks are performed by our mount commands

counterparts: rump_efs, rump_tmpfs, etc. The usage of the rump kernel variants

is unchanged from the originals, only the name is different. To maximize integra-

tion, these file servers share the same command line argument parsing code with

the regular mount utilities. Sharing was accomplished by restructuring the mount

utilities to provide an interface for command line argument parsing and by calling

those interfaces from the rump_xfs utilities.

Sharing argument parsing means that the file servers have the same syntax. This

feature makes usage interchangeable just by altering the command name. We also
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in-kernel mount:

/dev/sd0e /m/usb msdos rw,-u=1000

10.181.181.181:/m/dm /m/dm nfs rw,-p

equivalent rump kernel file server mount:

/dev/sd0e /m/usb msdos rw,-u=1000,rump

10.181.181.181:/m/dm /m/dm nfs rw,-p,rump

Figure 3.22: Use of -o rump in /etc/fstab. The syntax for a file system
served by an in-kernel driver or a rump kernel is the same apart from the rump flag.

added a rump option to the mount command. For example, consider the following

command: mount -t efs -o rump /dev/sd0e /mnt. It will invoke rump_efs in-

stead of mount_efs and therefore the file system will be mounted with a rump kernel

file system driver. The rump option works also in /etc/fstab, as is illustrated in

Figure 3.22. The flag allows the use of rump kernel file servers to handle specific

mounts such as USB devices and CD/DVD by adding just one option. The figure

also demonstrates how the NFS client (same applies to SMBFS/CIFS) running in-

side a rump kernel or the host kernel are completely interchangeable since the rump

kernel drivers use the sockin networking facility (Section 3.9.1) and therefore share

the same IP address with the host.

The list of kernel file system drivers available as rump servers is available in the

“SEE ALSO” section of the mount(8) manual page on a NetBSD system. Support

in 5.99.48 consists of ten disk-based and two network-based file systems.
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3.11.2 Requests: The p2k Library

We attach to the host as a puffs file server, so the file system requests we receive

are in the format specified by puffs. We must feed the requests to the rump kernel

to access the backend file system. To be able to do so, we must convert the requests

to a suitable format. Since the interface offered by puffs is close to the kernel’s

VFS/vnode interface [36] we can access the rump kernel directly at the VFS/vnode

layer if we translate the puffs protocol to the VFS/vnode protocol.

We list some examples of differences between the puffs protocol and VFS/vnode

protocol that we must deal with by translations. For instance, the kernel refer-

ences a file using a struct vnode pointer, whereas puffs references one using a

puffs_cookie_t value. Another example of a difference is the way (address, size)-

tuples are indicated. In the kernel struct uio is used. In puffs, the same informa-

tion is passed as separate pointer and byte count parameters.

The p2k, or puffs-to-kernel, library is a request translator between the puffs userspace

file system interface and the kernel virtual file system interface (manual page p2k.3 ).

It also interprets the results from the kernel file systems and converts them back to

a format that puffs understands.

Most of the translation done by the p2k library is a matter of converting data

types back and forth. To give an example of p2k operation, we discuss reading a

file, which is illustrated by the p2k read routine in Figure 3.23. We see the uio

structure being created by rump_uio_setup() before calling the vnode operation

and being freed after the call while saving the results. We also notice the puffs credit

type being converted to the opaque kauth_cred_t type used in the kernel. This

conversion is done by the p2k library’s cred_create() routine, which in turn uses

rump_pub_cred_create().
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int

p2k_node_read(struct puffs_usermount *pu, puffs_cookie_t opc,

uint8_t *buf, off_t offset, size_t *resid, const struct puffs_cred *pcr, int ioflag)

{

struct vnode *vp = OPC2VP(opc);

struct kauth_cred *cred = cred_create(pcr);

struct uio *uio = rump_pub_uio_setup(buf, *resid, offset, RUMPUIO_READ);

int rv;

RUMP_VOP_LOCK(vp, LK_SHARED);

rv = RUMP_VOP_READ(vp, uio, ioflag, cred);

RUMP_VOP_UNLOCK(vp);

*resid = rump_pub_uio_free(uio);

cred_destroy(cred);

return rv;

}

Figure 3.23: Implementation of p2k_node_read(). The parameters from the
puffs interface are translated to parameters expected by the kernel vnode interface.
Kernel data types are not exposed to userspace, so rump kernel public routines are
used to allocate, initialize and release such types.

The RUMP_VOP_LOCK() and RUMP_VOP_UNLOCK() macros deal with NetBSD kernel

VFS locking protocol. They take a lock on the vnode and unlock it, respectively.

From one perspective, locking at this level is irrelevant, since puffs in the host

kernel takes care of locking. However, omitting lock operations from the rump

kernel causes assertions such as KASSERT(VOP_ISLOCKED(vp)); in kernel drivers to

fire. Therefore, proper locking is necessary at this layer to satisfy the driver code.

3.11.3 Unmounting

A p2k file server can be unmounted from the host’s namespace in two ways: either

using the umount command (and the unmount() system call) on the host or by

killing the file server. The prior method is preferred, since it gives the kernel cache
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golem> mount -t msdos -o rump /dev/sd0e /mnt

panic: buf mem pool index 23

Abort (core dumped)

golem>

Figure 3.24: Mounting a corrupt FAT FS with the kernel driver in a
rump kernel. If the file system would have been mounted with the driver running
in the host kernel, the entire host would have crashed. With the driver running in
userspace in a rump kernel, the mount failed and a core dump was created without
otherwise affecting the host.

in puffs a chance to flush all data. It also allows the p2k library to call the rump

kernel and ask it to unmount the file system and mark it clean.

3.11.4 Security Benefits

Drivers for disk-based file systems are written assuming that file system images

contain trusted input. With USB sticks and DVDs untrusted images are common.

Still, without thinking, users mount untrusted file systems using kernel drivers.

Arbitrary memory access is known to be possible using a suitable crafted file system

image and fixing each file system driver to be bullet-proof is at best difficult [59].

When run in a rump kernel, a file system driver dealing with an untrusted image

is isolated in its own domain. This separation mitigates the possibility of a direct

memory access attack on the kernel.

To give an example of a useful scenario, a mailing list posting described a problem

with mounting a FAT file system from a USB stick causing a kernel crash and com-

plete system failure. By using a rump kernel with microkernel clients, the problem

is only an application core dump. Figure 3.24 illustrates what happens when the file
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system is mounted with the driver running in a rump kernel. Of course, the driver

was fixed to deal graciously with this particular bug, but others remain.

It needs to be stressed that mounting a file system as a server is feature wise no

different than using a driver running in the host kernel. The user and administrator

experience remains the same, and so does the functionality. Only the extra layer

of security is added. It is the author’s opinion and recommendation that untrusted

disk file systems should be never be mounted using a file system driver running in

kernel space.

A rump kernel has the same privileges as a process, so from the perspective of the

host system its compromise is the same as the compromise of any other application.

In case rogue applications are a concern, on most operating systems access can be

further limited by facilities such as jails [27] or sandboxing [19]. Networked file

system clients (such as NFS and CIFS) may also benefit from the application of

firewalls.

3.12 Remote Clients

Remote clients are clients which are disjoint from the rump kernel. For example,

on POSIX hosts remote clients run in different processes than their respective rump

kernels, either on the same host or not. The advantage of a remote client is that

the relationship between the remote client and a rump kernel is much like that of a

regular kernel and a process: the clients start up, run and exit independently. This

independence makes it straightforward to adapt existing programs as rump kernel

clients, and as we will see later in this section, allows existing POSIX binaries to

use services from a rump kernel without recompilation. For example, it is possible

to hijack an unmodified Firefox browser to use a TCP/IP stack provided by a rump

kernel. Remote clients are also the basis for rumpctrl (Section 4.3).
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Figure 3.25: Remote client architecture. Remote clients communicate with
the rump kernel through the rumpclient library. The client and rump kernel may
or may not reside on the same host or same type of host.

The general architecture of remote rump clients is illustrated in Figure 3.25. It is

explained in detail in the following sections.

Communication can be done over virtually any type of bus. The requirements for

the bus are merely to be able to read and write datagrams. By default, we provide

the implementation for two socket-based protocol families: Unix domain sockets and

TCP/IP. The advantages of Unix domain sockets are that the available namespace is

virtually unlimited and it is easy to bind a private server in a local directory without

fear of a resource conflict. Also, it is possible to use host credentials (via chmod)

to control who has access to the server. The TCP method does not have these

advantages — in the general case it is not possible to guarantee that a predefined

port is not in use — but TCP does work over the Internet. Generally speaking,

Unix domain sockets should be used when the server and client reside on the same

host.
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3.12.1 Client-Kernel Locators

Before the client is able to contact the rump kernel, the client must know where the

kernel is located. In the traditional Unix model locating the kernel is simple, since

there is one unambiguous kernel (“host kernel”) which is the same for every process.

However, remote clients can communicate with any rump kernel which may or may

not reside on the same host.

The client and rump kernel find each other by specifying a location using a URL.

For example, the URL tcp://1.2.3.4:4321/ specifies a TCP connection on IP

address 1.2.3.4 port 4321, while unix://serversocket specifies a UNIX domain

socket relative to the current working directory.

While service discovery models [11] are possible, they are beyond our current scope,

and manual configuration is currently required. In most cases, such as for all the

rump kernel using tests we have written, the URL can simply be hardcoded.

3.12.2 The Client

A remote client, unlike a local client, is not linked against the rump kernel. Instead,

it is linked against librumpclient (manual page rumpclient.3 ). Linking can happen

either when a program is compiled or when it is run — we mentioned this aspect

of linking earlier in Section 3.1.2. The former approach is usually used when writ-

ing programs with explicit rump kernel knowledge. The latter approach uses the

dynamic linker and can be used for pre-existing programs which were written and

compiled without knowledge of a rump kernel.

The rumpclient library provides support for connecting to a rump kernel and ab-

stracts communication between the client and the server. Furthermore, it provides
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function interfaces for system calls, as described in Section 3.6.1. Other interfaces

such as the VFS interfaces and rump kernel private interfaces are not provided, since

they do not implement the appropriate access control checks for remote clients.

The librumpclient library supports both singlethreaded and multithreaded clients.

Multithreaded clients are supported transparently, i.e. all the necessary synchroniza-

tion is handled internally by the library. The librumpclient library also supports

persistent operation, meaning it can be configured to automatically try to reconnect

in case the connection with the server is severed. Notably, as a reconnect may mean

for instance that the kernel server crashed and was restarted, the applications using

this facility need to be resilient against kernel state loss. One example is a web

browser, which requires only a page reload in case a TCP/IP server was killed in

the middle of loading a page.

The server URL is read from the RUMP_SERVER environment variable. The environ-

ment is used instead of a command line parameter so that applications which were

not originally written to be rump kernel clients can still be used as rump kernel

clients without code changes.

3.12.3 The Server

A rump kernel can be configured as a server by calling the rump kernel interface

rump_init_server(const char *url) from the local client. The argument is a

URL indicating an address the server will be listening to. The server will handle

remote requests automatically in the background. Initializing the serverside will not

affect the local client’s ability to communicate with the rump kernel.

The rump_server daemon (manual page rump server.1 ) is a configurable userspace

daemon for serving rump kernel remote clients. The factions and drivers supported
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A tmpfs server listening on INADDR_ANY port 12765:

$ rump_server -lrumpvfs -lrumpfs_tmpfs tcp://0:12765/

Map 1GB host file dk.img as the block device /dev/dk using etfs, specify local

domain URL using a relative path:

$ rump_allserver -d key=/dev/dk,hostpath=dk.img,size=1g unix://dkserv

A TCP/IP server with the if_virt driver, specify socket using an absolute path:

$ rump_server -lrumpnet -lrumpnet_net -lrumpnet_netinet \

-lrumpnet_virt unix:///tmp/tcpip

Figure 3.26: Example invocations for rump_server. All invocations create
rump kernels listening for clients at different addresses with different capabilities.

by the server instance are given as command line arguments and dynamically loaded

by the server. The variant rump_allserver includes all rump kernel components

that were available at the time that the system was built. Figure 3.26 illustrates

server usage with examples.

The data transport and protocol layer for remote clients is implemented entirely

within the hypervisor. The original implementation 9 utilized userspace host sockets,

so the hypervisor seemed like a convenient place to implement support. Later, that

also turned out to be the only sensible place, as it avoids having to teach the rump

kernel about the specifics of each bus.

The implementation locus means that the kernel side of the server and the hypercall

layer need to communicate with each other. The interfaces used for communica-

tion are a straightforward extension of the protocol we will discuss in detail next

9 Actually, that was the second implementation, but it was the first implementation which was
not purely experimental.
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(Section 3.12.4); we will not discuss the interfaces. The interfaces are defined in

sys/rump/include/rump/rumpuser.h and are implemented for the POSIX hyper-

visor in lib/librumpuser/rumpuser_sp.c. The rump kernel side of the imple-

mentation is provided by the rumpkern_sysproxy component. As a corollary of

the implementation being a component, support is optional in any given rump ker-

nel instance.

3.12.4 Communication Protocol

The communication protocol between the client and server is a protocol where the

main feature is a system call. The rest of the requests are essentially support

features for the system call. To better understand the request types, let us first

look at an example of what happens when a NetBSD process requests the opening

of /dev/null from a regular kernel.

1. The user process calls the routine open("/dev/null", O_RDWR);. This rou-

tine resolves to the system call stub in libc.

2. The libc system call stub performs a system call trap causing a context switch

to the kernel. The calling userspace thread is suspended until the system call

returns.

3. The kernel receives the request, examines the arguments and determines

which system call the request was for. It begins to service the system call.

4. The path of the file to be opened is required by the kernel. A pointer to the

path string is passed as part of the arguments. The string is copied in from

the process address space only if it is required. The copyinstr() routine

is called to copy the pathname from the user process address space to the

kernel address space.
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5. The file system code does a lookup for the pathname. If the file is found,

and the calling process has permissions to open it in the mode specified,

and various other conditions are met, the kernel allocates a file descriptor

for the current process and sets it to reference a file system node describing

/dev/null.

6. The system call returns the fd (or error along with errno) to the user process

and the user process continues execution.

We created a communication protocol between the client and rump kernel which

supports interactions of the above type. The request types from the client to the

kernel are presented and explained in Table 3.5 and the requests from the kernel to

the client are presented and explained in Table 3.6.

Request Arguments Response Description

handshake type (guest,

authenticated or

exec), name of

client program

success/fail Establish or update a process con-

text in the rump kernel.

syscall syscall number,

syscall args

return value,

errno

Execute a system call.

prefork none authentication

cookie

Establish a fork authentication

cookie.

Table 3.5: Requests from the client to the kernel.

Now that we know the communication protocol, we will compare the operations

executed in the regular case and in the rump kernel remote client case side-by-side.

The first part of the comparison is in Table 3.7 and the second part is in Table 3.8.



151

Request Arguments Response Description

copyin +

copyinstr

client address

space pointer,

length

data The client sends data from its ad-

dress space to the kernel. The

“str” variant copies up to the

length of a null-terminated string,

i.e. length only determines the

maximum. The actual length

is implicitly specified by the re-

sponse frame length.

copyout +

copyoutstr

address, data,

data length

none (kernel

does not expect

a response)

Requests the client to copy the at-

tached data to the given address

in the client’s address space.

anonmmap mmap size address anon

memory was

mapped at

Requests the client to mmap a

window of anonymous memory.

This request is used by drivers

which allocate userspace memory

before performing a copyout.

raise signal number none (kernel

does not expect

a response)

Deliver a host signal to the client

process. This request is used

to implement the rump kernel

“raise” signal model.

Table 3.6: Requests from the kernel to the client.
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Host syscall rump syscall

1. open("/dev/null", O_RDWR) 1. rump_sys_open("/dev/null",

O_RDWR) is called

2. libc executes the syscall trap. 2. librumpclient marshals the argu-

ments and sends a“syscall”request

over the communication socket.

the calling thread is suspended un-

til the system call returns.

3. syscall trap handler calls

sys_open()

3. rump kernel receives syscall re-

quest and uses a thread associated

with the process to handle request

4. thread is scheduled, determines

that sys_open() needs to be

called, and proceeds to call it.

4. pathname lookup routine calls

copyinstr()

5. pathname lookup routine needs

the path string and calls

copyinstr() which sends a

copyinstr request to the client

6. client receives copyinstr request

and responds with string datum

7. kernel server receives a response to

its copyinstr request and copies the

string datum to a local buffer

Table 3.7: Step-by-step comparison of host and rump kernel syscalls,
part 1/2.
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Host syscall rump syscall

5. the lookup routine runs and al-

locates a file descriptor referenc-

ing a backing file system node for

/dev/null

8. same

6. the system call returns the fd 9. the kernel sends the return values

and errno to the client

10. the client receives the response to

the syscall and unblocks the thread

which executed this particular sys-

tem call

11. the calling thread wakes up, sets

errno (if necessary) and returns

with the return value received from

the kernel

Table 3.8: Step-by-step comparison of host and rump kernel syscalls,
part 2/2.
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3.12.5 Of Processes and Inheritance

The process context for a remote client is controlled by the rump kernel server.

The rump lwproc interfaces available for local clients (manual page rump lwproc.3 )

cannot be used by remote clients. Whenever a client connects to a rump kernel

and performs a handshake, a new process context is created in the rump kernel.

All requests executed through the same connection are executed on the same rump

kernel process context.

A client’s initial connection to a rump kernel is like a login: the client is given a rump

kernel process context with the specified credentials. After the initial connection,

the client builds its own process family tree. Whenever a client performs a fork after

the initial connection, the child must inherit both the properties of the host process

and the rump kernel process to ensure correct operation. When a client performs

exec, the process context must not change.

Meanwhile, if another client, perhaps but not necessarily from another physical

machine, connects to the rump kernel server, it gets its own pristine login process

and starts building its own process family tree through forks.

By default, all new connections currently get root credentials by performing a guest

handshake. We recognize that root credentials are not always optimal in all circum-

stances, and an alternative could be a system where cryptographic verification is

used to determine the rump kernel credentials of a remote client. Possible examples

include Kerberos [39] and TLS [47] with clientside certificates. For the use cases so

far, limiting access to the server URL has been sufficient.

When a connection is severed, the meaning of which is bus-dependent, the rump

kernel treats the process context as a killed process. The rump kernel wakes up any

and all threads associated with the connection currently blocking inside the rump
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kernel, waits for them to exit, and then proceeds to free all resources associated with

the process.

3.12.6 Host System Call Hijacking

The only difference in calling convention between a rump client syscall function

and the corresponding host syscall function in libc is the rump_sys-prefix for a

rump kernel syscall. In other words, it is possible to select the entity the service

is requested from by adding or removing a prefix from the system call name. The

benefit of explicit source-level selection is that there is full control of which system

call goes where. The downside is that it requires source level control and compilation.

To use unmodified binaries, we must come up with a policy which determines which

kernel handles each syscall.

A key point for us to observe is that in Unix a function call API in libc (e.g.

open(const char *path, int flags, mode_t mode)) exists for all system calls.

The libc stub abstracts the details of user-kernel communication. The abstraction

makes it possible to change the nature of the call just by intercepting the call

to open() and directing it elsewhere. If the details of making the request were

embedded in the application itself, it would be much more difficult to override them

to call a remote rump kernel instead of the local host kernel.

The rumphijack library (lib/librumphijack, Figure 3.27) provides a mechanism

and a configurable policy for unmodified applications to capture and route part of

their system calls to a rump kernel instead of the host kernel. Rumphijack is based

on the technique of using LD_PRELOAD to instruct the dynamic linker to load a

library so that all unresolved symbols are primarily resolved from that library. The

library provides its own system call stubs that select which kernel the call should

go to. While the level of granularity is not per-call like in the explicit source control
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Figure 3.27: System call hijacking. The rumphijack library intercepts system
calls and determines whether the syscall request should be sent to the rump kernel
or the host kernel for processing.

method, using the classification technique we present below, this approach works in

practice for all applications.

From the perspective of librumphijack, system calls can be divided into roughly the

following categories. These categories determine where each individual system call

is routed to.

• purely host kernel calls: These system calls are served only by the host

kernel and never the rump kernel, but nevertheless require action on behalf

of the rump kernel context. Examples include fork() and execve().

• create an object: the system call creates a file descriptor. Examples include

open() and accept().

• decide the kernel based on an object identifier: the system call is
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directed either to the host kernel or rump kernel based on a file descriptor

value or pathname.

• globally pre-directed to one kernel: the selection of kernel is based on

user configuration rather than parameter examination. For example, calls to

socket() with the same parameters will always be directed to a predefined

kernel, since there is no per-call information available.

• require both kernels to be called simultaneously: the asynchronous

I/O calls (select(), poll() and variants) pass in a list of descriptors which

may contain file descriptors from both kernels.

Note: the categories are not mutually exclusive. For example, socket() and open()

belong to several of them. In case open() is given a filename under a configurable

prefix (e.g. /rump), it will call the rump kernel to handle the request and new rump

kernel file descriptor will be returned to the application as a result.

The rest of this section describes advanced rumphijack features beyond simple sys-

tem call routing. Nevertheless, those features are commonly required for supporting

many real-world applications.

File Descriptor Games

A rump kernel file descriptor is differentiated from a host kernel file descriptor by the

numerical value of the file descriptor. Before a rump kernel descriptor is returned

to the application, it is offset by a per-process configurable constant. Generally

speaking, if the file descriptor parameter for a system call is greater than the offset,

it belongs to the rump kernel and the system call should be directed to the rump

kernel.
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The default offset was selected to be half of select()’s FD_SETSIZE and is 128.

This value allows almost all applications to work, including historic ones that use

select() and modern ones that use a fairly large number of file descriptors. In

case the host returns a file descriptor which is equal to or greater than the process’s

hijack fd offset, rumphijack closes the fd and sets errno to ENFILE.

A problem arises from the dup2() interface which does not fit the above model: in

dup2 the new file descriptor number is decided by the caller. For example, a common

scheme used e.g. by certain web servers is accepting a connection on a socket, forking

a handler, and dup2’ing the accepted socket connection to stdin/stdout. The new

file descriptor must belong to the same kernel as the old descriptor, but in case of

stdin/stdout, the new file descriptor numbers always signify the host kernel. To

solve this conflict, we maintain a file descriptor aliasing table which keeps track of

cross-kernel dup2’s. There are a number of details involved, such as making sure that

closing the original fd does not close the dup2’d fd in the different kernel namespace,

and making sure we do not return a host descriptor with a value duplicate to one in

the dup2 space. In fact, a large portion of the code in the hijack library exists solely

to deal with complexities related to dup2. All of the complexity is fully contained

within the hijack and rumpclient libraries and it is not visible to applications using

the libraries.

Another issue we must address is protecting the file descriptors used internally by

librumpclient. Recall, the connection between the remote client and the rump kernel

associates the remote client with a rump kernel process context, and if the connection

is lost all rump kernel process state such as file descriptors are lost with it. In some

scenarios applications want to close file descriptors en masse. One example of such a

scenario is when an application prepares to call exec(). There are two approaches

to mass closing: either calling close() in a loop up to an arbitrary descriptor

number or calling closefrom() (which essentially calls fcntl(F_DUPFD)). Since

the application never sees the rumpclient internal file descriptors and hence should
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not close them, we take precautions to prevent it from happening. The hijack

library notifies rumpclient every time a descriptor is going to be closed. There are

two distinct cases:

• A call closes an individual host descriptor. In addition to the obvious close()

call, dup2() also belongs into this category. Here we inform rumpclient of a

descriptor being closed and in case it is a rumpclient descriptor, it is dup’d

to another value, after which the hijack library can proceed to invalidate the

file descriptor by calling close or dup2.

• The closefrom() routine closes all file descriptors equal to or greater than

the given descriptor number. We handle this operation in two stages. First,

we loop and call close() for all descriptors which are not internal to rump-

client. After we reach the highest rumpclient internal descriptor we can

execute a host closefrom() using one greater than the highest rumpclient

descriptor as the argument. Next, we execute closefrom() for the rump

kernel, but this time we avoid closing any dup2’d file descriptors.

Finally, we must deal with asynchronous I/O calls that may have to call both kernels.

For example, in networking clients it is common to pass in one descriptor for the

client’s console and one descriptor for the network socket. Since we do not have a

priori knowledge of which kernel will have activity first, we must query both. This

simultaneous query is done by creating a thread to call the second kernel. Since

only one kernel is likely to produce activity, we also add one host kernel pipe and

one rump kernel pipe to the file descriptor sets being polled. After the operation

returns from one kernel, we write to the pipe of the other kernel to signal the end

of the operation, join the thread, collect the results, and return.
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3.12.7 A Tale of Two Syscalls: fork() and execve()

The fork() and execve() system calls require extra consideration both on the client

side and the rump kernel side due to their special semantics. We must preserve those

semantics both for the client application and the rump kernel context. While these

operations are implemented in librumpclient, they are most relevant when running

hijacked clients. Many programs such as the OpenSSH [44] sshd or the mutt [42]

MUA fail to operate as remote rump clients if support is handled incorrectly.

Supporting fork()

Recall, the fork() system call creates a copy of the calling process which essentially

differs only by the process ID number. After forking, the child process shares the

parent’s file descriptor table and therefore it shares the rumpclient socket. A shared

connection cannot be used, since use of the same socket from multiple independent

processes will result in corrupt transmissions. Another connection must be initiated

by the child. However, as stated earlier, a new connection is treated like an initial

login and means that the child will not have access to the parent’s rump kernel

state, including file descriptors. Applications such as web servers and shell input

redirection depend on the behavior of file descriptors being correctly preserved over

fork.

We solve the issue by dividing forking into three phases. First, the forking process

informs the rump kernel that it is about to fork. The rump kernel does a fork of the

rump process context, generates a cookie and sends that to the client as a response.

Next, the client process calls the host’s fork routine. The parent returns immedi-

ately to the caller. The newly created child establishes its own connection to the

rump kernel server. It uses the cookie to perform a handshake where it indicates

it wants to attach to the rump kernel process the parent forked off earlier. Only
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pid_t

rumpclient_fork()

{

pid_t rv;

cookie = rumpclient_prefork();

switch ((rv = host_fork())) {

case 0:

rumpclient_fork_init(cookie);

break;

default:

break;

case -1:

error();

}

return rv;

}

Figure 3.28: Implementation of fork() on the client side. The prefork
cookie is used to connect the newly created child to the parent when the new remote
process performs the rump kernel handshake.

then does the child return to the caller. Both host and rump process contexts retain

expected semantics over a host process fork. The client side fork() implementa-

tion is illustrated in Figure 3.28. A hijacked fork call is a simple case of calling

rumpclient_fork().

Supporting execve()

The requirements of exec are the “opposite” of fork. Instead of creating a new

process, the same rump process context must be preserved over a host’s exec call.

Since calling exec replaces the memory image of a process with that of a new one

from disk, we lose all of the rump client state in memory. Important state in memory
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includes for example rumpclient’s file descriptors. For hijacked clients the clearing

of memory additionally means we will lose e.g. the dup2 file descriptor alias table.

Recall, though, that exec closes only those file descriptors which are set FD_CLOEXEC.

Before calling the host’s execve, we first augment the environment to contain all

the rump client state; librumpclient and librumphijack have their own sets of state

as was pointed out above. After that, execve() is called with the augmented

environment. When the rump client constructor runs, it will search the environment

for these variables. If found, it will initialize state from them instead of starting from

a pristine state.

As with fork, most of the kernel work is done by the host system. However, there is

also some rump kernel state we must attend to when exec is called. First, the process

command name changes to whichever process was exec’d. Furthermore, although

file descriptors are in general not closed during exec, ones marked with FD_CLOEXEC

should be closed, and we call the appropriate kernel routine to have them closed.

The semantics of exec also require that only the calling thread is present after exec.

While the host takes care of removing all threads from the client process, some

of them might have been blocking in the rump kernel and will continue to block

until their condition has been satisfied. If they alter the rump kernel state after

their blocking completes at an arbitrary time in the future, incorrect operation may

result. Therefore, during exec we signal all lwps belonging to the exec’ing process

that they should exit immediately. We complete the exec handshake only after all

such lwps have returned from the rump kernel.
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Figure 3.29: Local vs. Remote system call overhead. The cost of remote
system calls is dominated by the amount of client-kernel roundtrips necessary due
to copying data in and out. For local clients the cost of a system call is virtually
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3.12.8 Performance

Figure 3.29 shows the amount of time it takes to perform 100,000 system call requests

as a function of the amount of copyin/out pairs required for servicing the system

call. A system call which does nothing except copyin/out on 64 byte buffers was

created for the experiment. The measurement was done both for a local client and

a remote client accessing a server hosted on the same system. We see that for

the remote client copyin/out dominates the cost — if the system call request itself

is interpreted as a copyin and copyout operation, the time is a linear function of

the number of copyin/out operations. In contrast, for the local case the duration

increases from 0.34s to 0.43s when going from 0 to 8 copyin/out requests. This data

shows that copyin/out I/O is a factor in total cost for local calls, but it does not

have a dominant impact. Therefore, we conclude that the IPC between the client

and server is the dominating cost for remote system calls.
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The straightforward optimization which does not involve modifying the host system

is to decrease the number of remote copyin/out requests required for completing a

syscall request. This decrease can be reached in a fairly straightforward manner by

augmenting the syscall definitions and pre-arranging parameters so that pre-known

copyin/out I/O can be avoided. Possible options are piggy-backing the data copy

as part of syscall request/response, or by using interprocess shared memory in case

the client and server are on the same machine. For example, the open() syscall

will, barring an early error, always copy in the pathname string. We can make the

syscall code set things up so that the pathname copyin is immediately satisfied with

a local copy operation instead of a remote request and the associated round trip

delay.

Anecdotal analysis

For several weeks the author did his day-to-day web browsing with Firefox acting as

a remote client for a rump kernel TCP/IP stack. There was no human-perceivable

difference between the performance of a rump networking stack and the host net-

working stack, either in bulk downloads, flash content or interactive page loads. The

only human-perceivable difference was the ability to reboot the TCP/IP stack from

under the browser without having to close the browser first.

Microbenchmarks show that remote system calls are orders of magnitude slower than

local system calls especially due to copyin/out I/O. However, this“macrobenchmark”

suggests that others factors in real application hugely mitigate this performance dif-

ference. We conclude that without a specific application use case any optimizations

are premature. In the event of such use cases emerging, optimizations know from

literature [6, 31] may be attempted.
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Figure 3.30: Time required to bootstrap one rump kernel. The time varies
from configuration to configuration because of the the initialization code that must
be run during bootstrap.

3.13 Experiment: Bootstrap Time

Startup time is important when the rump kernel is frequently bootstrapped and

“thrown away”. This transitory execution happens for example with utilities and

in test runs. It is also an enjoyment factor with interactive tasks, such as devel-

opment work with a frequent iteration, as delays of over 100ms are perceivable to

humans [38].

The bootstrap times for various rump kernel faction configurations are presented

in Figure 3.30. In general, it can be said that a rump kernel bootstraps itself in a

matter of milliseconds, i.e. a rump kernel outperforms a full operating system by a

factor of 1000 with this metric. Furthermore, booting a rump kernel is faster than

the time required for a hypervisor to launch a new instance. We conclude that a

rump kernel boots fast enough.
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Network clusters

Bootstrapping a single node was measured to be an operation measured in millisec-

onds. High scalability and fast startup times make rump kernel a promising option

for large-scale networking testing [24] by enabling physical hosts to have multiple

independent networking stacks and routing tables.

We measure the total time it takes to bootstrap such a cluster in userspace, and to

configure and send an ICMP ECHO packet through a networking cluster with up to

255 instances of a rump kernel. The purpose of the ICMP ECHO is to verify that

all nodes are functional. The cluster is of linear topology, where node n can talk to

the neighboring n−1 and n+ 1. This topology means that there are up to 254 hops

in the network, from node 1 to 255.

We measured two different setups. In the first one we used standard binaries pro-

vided by a NetBSD installation to start and configure the rump kernels acting as the

nodes. This remote client approach is most likely the one that will be used by most

for casual testing, since it is simple and requires no coding or compiling. We timed

the script shown in Figure 3.31. In the second setup we wrote a self-contained C

program which bootstrapped a TCP/IP stack and configured its interfaces and rout-

ing tables. This local client approach is slightly more work to implement, but can

be a valuable consideration if node startup and configuration is a bottleneck. Both

approaches provide the same features during runtime. The results are presented in

Figure 3.32.

The standard component approach takes under 8s to start and configure a network-

ing cluster of 255 nodes. Although this approach is fast enough for most practical

purposes, when testing clusters with 10-100x as many nodes, this startup time can

already constitute a noticeable delay in case a full cluster is to be restarted. Assum-

ing linear scaling continues, i.e. hardware limits such as available memory are not
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#!/bin/sh

RUMP_COMP=’-lrumpnet -lrumpnet_net -lrumpnet_netinet -lrumpnet_shmif’

[ $# -ne 1 ] && echo ’need count’ && exit 1

[ ! $1 -ge 3 -o ! $1 -le 255 ] && echo ’count between 3 and 255’ && exit 1

tot=$1

startserver()

{

net=${1}

export RUMP_SERVER=unix://rumpnet${net}

next=$((${net} + 1))

rump_server ${RUMP_COMP} ${RUMP_SERVER}

rump.ifconfig shmif0 create

rump.ifconfig shmif0 linkstr shm/shmif${net}

rump.ifconfig shmif0 inet 1.2.${net}.1 netmask 0xffffff00

if [ ${net} -ne ${tot} ]; then

rump.ifconfig shmif1 create

rump.ifconfig shmif1 linkstr shm/shmif${next}

rump.ifconfig shmif1 inet 1.2.${next}.2 netmask 0xffffff00

fi

[ ${net} -ne 1 ] && \

rump.route add -net 1.2.1.0 -netmask 0xffffff00 1.2.${net}.2

[ ${next} -ne ${tot} -a ${net} -ne ${tot} ] && \

rump.route add -net 1.2.${tot}.0 -netmask 0xffffff00 1.2.${next}.1

}

for x in ‘jot ${tot}‘; do

startserver ${x}

done

env RUMP_SERVER=unix://rumpnet${tot} rump.ping -c 1 1.2.1.1

Figure 3.31: Script for starting, configuring and testing a network clus-
ter. This script can be used to test routing in up to the IP MAXTTL linearly
chained TCP/IP stacks.
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hit, the local client approach can bootstrap 10k nodes in 45 seconds, which is likely

fast enough for all cluster reboot purposes.

3.14 Summary

We began this chapter by describing the cornerstone techniques for how to convert

an existing monolithic kernel codebase into an anykernel. To retain the existing

properties of the monolithic kernel, we did not introduce any new technologies, and

adjusted the codebase using code moving and function pointers. These techniques

were enough to convert the NetBSD kernel into an anykernel with an independent

base and orthogonal factions.

We went over the various rump kernel implementation aspects such as implicit thread

creation and the CPU scheduler. After that, we studied the effects that feature
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relegation has on the implementation of the virtual memory subsystem and locking

facilities. The rest of the chapter discussed various segments of the implementation,

such as microkernel style file servers with rump kernel backends, USB hardware

drivers and accessing rump kernels over the Internet.

We found out that many of the adjustments we did to NetBSD pertaining to the

subject matter had a wider benefit. One example was the addition of the ioconf

and pseudo-root keywords to a config file. This improvement simplified creating

kernel modules out of device drivers and has been used by dozens of non rump

kernel drivers since. Another modification we did was the ability to disable builtin

kernel modules. This modification made it possible to disable drivers with newly

discovered vulnerabilities without having to immediately reboot the system. These

out-of-band benefits show that not only were our modifications useful in addressing

our problem set, but they also benefit the original monolithic kernel.
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4 Rump Kernel Ecosystem

In the previous chapters we examined the core architectures of the anykernel and

rump kernels. In this chapter, we will look at more practical aspects: how to build

rump kernels on/for practically any architecture/OS, how to link rump kernels into

software stacks and how to use the resulting software stacks. In other words, this

chapter presents some use cases for rump kernels. As opposed to the previous chap-

ter, we no longer limit the discussion to running rump kernels in NetBSD userspace.

We discuss software available from http://repo.rumpkernel.org.

4.1 buildrump.sh

To be able to run software, one must first compile software. Compiling software

is done through a build framework, at least for any non-trivial project consisting

of more than a handful of source modules. The rump kernel implementation grew

around the native build framework of NetBSD. When building rump kernels for

userspace as part of a NetBSD-targeted build, the right tools are automatically

present and properly configured. Those tools are not automatically present in other

situations, especially on non-NetBSD build hosts. The buildrump.sh script ad-

dresses the need of building rump kernel components on practically any POSIX-like

host. The possible target platforms are legion.

At the core of buildrump.sh is NetBSD’s intrinsic ability to cross-build itself on

any platform. The build involves first building the build tools as host binaries, and

then moving on to build the rump kernel binaries for the target system. The cross-

build is accomplished by a script called build.sh [37]. After a fashion, the naming

of buildrump.sh pays homage to the underlying script.

http://repo.rumpkernel.org
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The script is available from http://repo.rumpkernel.org/buildrump.sh, along

with related subroutine scripts.

4.1.1 The Double-crossing Toolchain

Let us first consider what cross-building is. A cross-build can be from one OS

or version to another, from one machine architecture to another, neither, or both.

buildrump.sh always assumes the case of both, which means for example that it

will not perform probes which require executing the target code.

The common case for the build host is an x86 Linux and the target is building rump

kernel components for x86. In other words, in the common case we are building

from one OS to another, but are building for the same machine architecture as the

host. Therefore, the host’s compiler knows how to generate target binaries. We will

use this knowledge to optimize the user experience in the common case, while still

supporting other cases as well.

The typical approach to cross-building is to first obtain a cross-toolchain and only

after that proceed with the build. Contrary to standard practice, buildrump.sh

does not build a toolchain. Instead, it creates wrappers around a user-supplied

toolchain and builds the target binaries using those wrappers. The wrappers make

the user-supplied toolchain look like a NetBSD toolchain, so that the NetBSD Make-

files work. For example, most compilers do not recognize the option -cxx-isystem.

If the wrapper detects a compiler where that option is not supported, the option is

translated to -isystem before the compiler is run.

The rationale behind using wrappers is convenience. First, downloading and build-

ing a cross-toolchain takes several times longer than building the actual rump kernel

components. Second, since in the most common case (and a few others) there al-

http://repo.rumpkernel.org/buildrump.sh
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ready is a usable toolchain sans wrappers, we would unnecessarily be burdening the

user if we always required a NetBSD-targeting toolchain.

In cases where there is no possibility to use the host’s toolchain, e.g. when on

Mac OS X which uses a different object format (MACH-O vs. ELF), the user must

obtain a suitable toolchain before running buildrump.sh. The same requirement for

first having to obtain a suitable toolchain also applies when compiling to a different

machine architecture, e.g. to ARM from an x86 host.

Some compilers may generate code for different machine architectures based on

the supplied flags. For example, gcc targeting x86 64 will generate code for 32bit

x86 if -m32 is passed as an argument. As part of its output, buildrump.sh will

publish the wrappers which include the toolchain flags passed to buildrump.sh.

So, for example, if an x86 64 toolchain and -m32 is passed to buildrump.sh, a

i386--netbsdelf toolchain will be generated by buildrump.sh. In Section 4.2 we

will look at how this set of wrappers can be used for further constructs on top of

rump kernels.

4.1.2 POSIX Host Hypercalls

The first use case of buildrump.sh was to make building the rump kernel for Linux

userspace practical and user-friendly. For the result to also be functional, a hypercall

implementation was required. Due to that historical reason, the default mode of op-

eration of buildrump.sh is to also build the POSIX hypercall implementation from

src-netbsd/lib/librumpuser and also a handful of other libraries and utilities

such as src-netbsd/lib/librumphijack and src-netbsd/usr.bin/rump_server.

Different POSIX’y platforms have subtle differences, for example in which POSIX

version they conform to, and therefore what the exact set of supported inter-
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faces is. The first phase of building with a POSIX platform as the target runs

a probe. The probe is a normal GNU autoconfigure script which is hosted in

src-netbsd/lib/librumpuser/configure. The configure script checks for exam-

ple if clock_nanosleep() is available, and therefore if it can be used to accurately

implement rumpuser_clock_sleep() or if a best-effort use of nanosleep() is all

that is possible.

When not building for a POSIX platform, the POSIX hypercall build must be

explicitly disabled by the user. Disabling the POSIX hypercall build also disables

the associated probe.

4.1.3 Full Userspace Build

Though the original purpose of buildrump.sh was to build kernel components,

especially after work on the Rumprun unikernel (Section 4.2) began, it became

clear that some easily invoked method for producing the corresponding NetBSD

kernel and userspace headers and core userspace libraries, e.g. libc and libm, was

required. This functionality was bolted on to buildrump.sh, and can optionally be

invoked. It is worth taking the time to understand that producing full headers and

libraries is orthogonal to building to run on a userspace platform.

4.1.4 src-netbsd

To build rump kernel components, buildrump.sh needs the source code for the

relevant parts of the NetBSD tree. Theoretically, any vintage of the NetBSD source

tree would work. However, in practice, a new enough vintage of the NetBSD tree

is required. Historically, the user was required to obtain the NetBSD source tree

before running buildrump.sh. Since the full NetBSD tree is large and since a
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branch name description

kernel-src bare minimum sources necessary for building rump kernels. In

addition to the kernel sources, the tools required for building

rump kernels are also included in this branch.

user-src various userspace libraries and utilities useful for common

rump kernel applications, e.g. libm and ifconfig

posix-src rumpuser implementation for POSIX platforms

buildrump-src kernel + posix, i.e. what buildrump.sh builds by default

appstack-src kernel + user, useful for e.g. unikernels (Section 4.2)

all-src kernel + posix + user

Table 4.1: src-netbsd branches. The first set of branches are base branches
which contain no overlap. The second set of branches are the convenience branches
which contain a certain union of the base branches. You will most likely want to
use a convenience branch for your project. The precise content lists for the base
branches are available from src/sys/rump/listsrcdirs.

majority of the tree is not relevant for rump kernels, the relevant parts of the tree

are now mirrored at http://repo.rumpkernel.org/src-netbsd. This source tree

represents a known-good and tested vintage of the NetBSD source tree for use

with rump kernels; the contents are a regularly updated snapshot of the NetBSD

development head. The checkout.sh script in the buildrump.sh repository handles

the details of the mirroring process.

The src-netbsd repository supplies several branches, with the idea being that the

user can choose the minimal set of sources required for their particular application.

The branches are listed in Table 4.1. These branches may be used as either a

submodule, or fully duplicated into third party repositories.

http://repo.rumpkernel.org/src-netbsd


176

4.2 Rumprun Unikernel

The Rumprun unikernel is a unikernel [55] OS framework built on top of driver

components provided by a rump kernels. Essentially, a unikernel is akin to an em-

bedded system, where there is no separation between the application and system

components of the software stack. Rump kernels are well-suited to building a uniker-

nel framework, since the OS side of a unikernel is composed almost exclusively of

drivers, as can be verified by examining the amount of non-driver code in Rumprun.

While Rumprun is also applicable for bare metal embedded systems, the trend to-

wards the cloud and microservices has made Rumprun particularly relevant due to

the ability to run existing application-level programs.

The general idea of a unikernel is to bundle the operating system side components

and application(s) into a single image. When that image is booted on a given

platform, the instance is set up and the application is run according to the specified

configuration. Notably, even though the application and system side components

are bundled into a single image, the concept is orthogonal to whether or not both

run in the same hardware protection domain.

The goal of Rumprun is to provide the simplest possible glue code for rump ker-

nels to realize the target. We will discuss the inner workings of Rumprun. As

usual, the exact details of how to build and configure the image are left to the user

documentation.

The scope of the Rumprun unikernel is to enable creating bootable unikernel images

from application-level source code. Those images may be manually launched to

create instances. Details on how to deploy and manage a“fleet”of unikernel instances

is beyond the scope of Rumprun. In other words, the Orchestrating System for the

Rumprun unikernel is expected to be provided by 3rd parties.
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As an option, Rumprun can provide a POSIX-like userspace environment which

allows turning unmodified POSIX programs into unikernel images. An explicit goal

of Rumprun was to enable existing POSIX’y code to run with zero modifications.

That is not to say that everything will work without modification — consider that

code occasionally must be ported to run between regular Unix platforms — rather

that the ideal case will not require code modifications. Non-trivial applications and

libraries, e.g. libcurl, mpg123 and sqlite, do work without any changes. As we discuss

Rumprun in this chapter, we will point out some limitations in Rumprun to further

illustrate when code changes may be required.

A packaging system for tested and, where necessary, ported POSIX’y code to run

on Rumprun is available at http://repo.rumpkernel.org/rumprun-packages.

Further discussion on the packaging system is beyond the scope of this book.

The Rumprun unikernel works on top of x86 platforms on bare metal, Xen [3],

KVM [29], and others. As of writing this, there is also nascent ARM support and

Rumprun has successfully run networked services on an ARM evaluation board. In

the following discussion, for machine dependent details, we will cover only x86, and

more specifically x86 64.

Rumprun source code is available from http://repo.rumpkernel.org/rumprun.

For an architecture diagram of the software stack, refer to Figure 4.1.

4.2.1 bmk – Bare Metal Kernel

Since a rump kernel is not a real kernel, we need a real kernel in our Rumprun soft-

ware stack to provide functions which rump kernels do not give us. For review, these

functions include for example bootstrap, thread creation, scheduling, interrupts and

page level memory management. We call that kernel the Bare Metal Kernel, or bmk

http://repo.rumpkernel.org/rumprun-packages
http://repo.rumpkernel.org/rumprun
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Figure 4.1: Rumprun software stack. Two modes are presented. The one on
the left includes the POSIX’y userspace layers and can run unmodified programs.
The one on the right is more lightweight, but mandates custom programs. POSIX’y
programs are limited to POSIX’y interfaces, while custom applications may call the
underlying OS layer directly. The specifics of the layers are discussed throughout
this chapter.

for short. We will use the shorthand form from now on. bmk was originally written

to demonstrate how to run rump kernels on top of bare metal. The more common

recent use case is to run as a virtualized service on top of e.g. KVM, but the name

stuck nonetheless.

The platform-specific implementations of bmk for Xen and non-Xen (e.g. KVM and

bare metal) are different in places. We will limit our discussion to non-Xen platforms.

The parts of the implementation common to all platforms can be found under the

source tree in lib/libbmk_core. Platform-specific code is in platform/xen and

platform/hw for Xen and non-Xen, respectively.
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Bootstrap

The first stages of bootstrap are beyond Rumprun and relegated to a multiboot-

compatible bootloader, provided by e.g. GRUB [22] or QEMU [48]. The assembly

entry point for bmk is at _start in platform/hw/arch/amd64/locore.S. At the

entry point, we save information provided by multiboot (e.g. memory size), set up

bootstrap pagetables, switch the CPU to 64bit mode — a multiboot loader will

leave the CPU in 32bit mode — set up the stack, and proceed to call the C entry

point x86_boot(). In other words, we do the minimum of what more or less every

operating system does at the early bootstrap stage.

The C startup code initializes the console and performs various architecture-specific

initializations such as setting up the interrupt controller. Then, the scheduler is ini-

tialized, the page allocator is set up, and finally the main thread is created by calling

bmk_sched_startmain(). The main thread eventually launches the application.

Threads and Scheduling

Recall, everything in a rump kernel runs in thread context (Section 2.3). On

Rumprun, everything except the lowest-level interrupt acknowledgement runs in

cooperatively scheduled thread context. The scheduler, including thread creation

and TLS support, is implemented in lib/libbmk_core/sched.c. The Rumprun

stack has no knowledge of processes, apart from what rump kernels provide.

The rationale for cooperative scheduling is that it produces not only a more readily

repeatable result from one execution to another, but also ensures that a thread is

never preempted unless it has finished its work and is ready to block. In fact, a

cooperative thread scheduler matches the run-to-completion behavior of the rump

kernel CPU scheduler. Therefore, the Rumprun unikernel will never encounter the
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situation where a host thread is preempted with the rump kernel context held, and

therefore unnecessary host thread context switches are avoided.

In environments where the scheduler must protect against threads hogging all CPU

time and preventing other threads from running, cooperative scheduling is not pos-

sible. Since in a unikernel all threads are essentially working towards the same goal,

we can assume that there are no hostile threads. Of course, there is no reason why

preemptive scheduling could not be implemented for bmk, just that we have chosen

not to do so. Generally speaking, we are of the opinion that cooperative schedul-

ing is more effective for the Rumprun unikernel, due to reasons mentioned in the

previous paragraph.

The rump kernel interacts with the scheduler via the hypercalls, as usual. When

a rump kernel hypercall encounters a situation where it decides to block, it un-

schedules the rump kernel context, sets up the conditions for the wakeup, and calls

bmk_sched_block(). The scheduler then selects the next thread to run, or if none

are available, blocks and waits for an interrupt to generate work. Blocking via the

rump kernel happens completely transparently to POSIX-style applications using

rump kernel system calls. Custom non-POSIX applications, in addition to blocking

via a rump kernel system call, may also call the bmk scheduler directly. Figure 4.2

illustrates with a stack trace how a POSIX application interacts with the bmk sched-

uler. In that particular case, the wakeup will be generated by a timer interrupt; the

timer interrupt will wake the interrupt thread, which in turn will wake up the ap-

plication thread.

The cooperative scheduling model exhibits a feature over the typical preemptively

scheduled pthreads. Any program with a thread which runs in a busy-loop without

making blocking system calls will block the entire system. However, this type of

behavior is not common and mostly found in programs for scientific computation.

Nonetheless, one must be aware of the limitation when choosing the programs which
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#0 bmk_sched_block () [bmk]

#1 rumpuser_clock_sleep () [rumpuser]

#2 kpause () [rump kernel]

#3 nanosleep1 () [rump kernel]

#4 sys___nanosleep50 () [rump kernel]

#5 sy_call () [rump kernel]

#6 sy_invoke () [rump kernel]

#7 rump_syscall () [rump kernel]

#8 rump___sysimpl_nanosleep50 () [rump kernel]

#9 __nanosleep50 () [libpthread]

#10 _sleep () [libc]

#11 main () [application]

Figure 4.2: Rumprun stack trace for sleep(). The trace starts from the appli-
cation and ends where bmk schedules another thread. The stack trace is annotated
on the right with descriptions of which logical component each stack frame belongs
to.

run on Rumprun. If it is absolutely necessary to run such programs, the best option

is to insert yield calls into the busy-looping thread. To ensure correct execution

of periodic tasks, application threads should yield or block dozens of times per

second. Since yielding is cheap, it is better to err on the side of doing it more often

than necessarily. Still, we want to stress that in our experience, regular I/O bound

programs “just work” without modification.

4.2.2 Rumpuser

The rumpuser hypercall interface for the rump kernel is implemented on top of bmk.

The implementation resides in rumprun/lib/lib/libbmk_rumpuser. The imple-

mentation can be used as a reference implementation for rumpuser especially for

cases with underlying cooperative threading. We leave perusing the implementation

to the interested reader.
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4.2.3 To Userspace (or Not To Userspace)

As indicated in Figure 4.1, two modes of operation are available: one which is capable

of running POSIX’y userspace and one which is not capable of that. There are

tradeoffs to including a full userspace stack in your unikernel instance. Throughout

this text, by “userspace” we mean the normal userspace environment available on

a regular POSIX’y operating system. On a unikernel, there is strictly speaking no

hard division between the kernel and userspace, but we nonetheless use the term

“userspace” to describe the POSIX’y application portion of the stack.

Like on a regular operating system, the userspace environment is a collection of

library interfaces on top of which normal programs run. The system call interface

is an analogous, lower level set of interfaces, but in most cases programs will run

on top of the userspace environment, not directly on system calls. There are some

exceptions, such as programs written in Go [54], where the language runtime is

implemented directly on top of system calls.

The advantage of including userspace support is not only that POSIX programs

work out-of-the-box, but also that userspace interfaces are mostly standard and

stable. Therefore, no matter the future work we do on the Rumprun unikernel, we

will always guarantee that userspace interfaces remain stable. We do not offer the

same level of guarantee for bmk, even if we attempt to minimize churn.

The disadvantage of the full userspace stack is its extra footprint. Not only are

userspace libraries mandated, but in practise the rump kernel file system components

are needed because of various libc interfaces implicitly assuming the presence of

certain files, e.g. /etc/services and /etc/resolv.conf. Therefore, if you need

to minimize your footprint, and you do not have an existing, complex application

written against POSIX interfaces, you most likely want to avoid the userspace layers.
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#ifdef RUMP_KERNEL_IS_LIBC

__weak_alias(lseek,rump___sysimpl_lseek);

__weak_alias(_lseek,rump___sysimpl_lseek);

__strong_alias(_sys_lseek,rump___sysimpl_lseek);

#endif /* RUMP_KERNEL_IS_LIBC */

Figure 4.3: Userspace aliases for rump kernel syscalls. Conditionally, a rump
kernel can provide system calls with names that a userspace environment expects.
Both user-visible overridable (weak) and system-internal non-overridable (strong)
aliases are provided. Not all aliases are necessary for all system calls, but since they
do no harm, we provide them. For discussion on the system call entry point itself,
see Section 3.6.1. As usual, there is a naming problem (with the macro name), but
since the name is not user-visible, it has not been worth the fuss to adjust the name.

System Calls

We know from Section 3.6.1 that a rump kernel provides ABI-identical system calls

apart from a rump_sys_ prefix in the symbol name. We also implicitly understand

that some component in the Rumprun software stack must provide the system calls

under the same name as a regular libc. Furthermore, performing a system call must

result in the handler in the rump kernel being invoked.

The system call entry points in libc invoke the kernel via a hardware trap. Those

entry points may be useful in the future if we wish to run the application portion

and system portion of the Rumprun stack in separate protection domains. However,

in the simplest model we do not wish to assume anything about the underlying

platform’s capability to support privilege levels, and therefore the standard libc

entry points are not applicable.

We augment the rump kernel system call handlers to conditionally alias the rump

kernel entry point symbol to the libc symbols. These aliases are illustrated in Fig-

ure 4.3. For the Rumprun unikernel, we build the rump kernel with that conditional

knob turned on. Furthermore, we build libc without the usual trap-generating entry



184

points. When everything is linked together, an application unaware of rump kernels

calling foo() results in the same as an application aware of rump kernels calling

rump_sys_foo(). In effect, POSIX applications on Rumprun act as local rump

kernel clients without being aware of it.

POSIX Threads (pthreads)

The POSIX threads or pthreads library offers a set of interfaces upon which multi-

threaded applications can be realized. Those interfaces include for example ones for

creating threads and performing synchronization between threads. Given the stan-

dard nature and widespread use of pthreads, we wish to support programs which

use pthreads.

Again, there are multiple straightforward ways on how to realize pthread support.

One is to write a pthread library from scratch. Another one is to port a pthread

library from another operating system. However, both of those approaches incur

implementation effort and maintenance, and are against our general principles of

design.

We observe that the NetBSD pthread library is implemented 1:1 on top of NetBSD’s

kernel threads, i.e. the relation between an application pthread and a kernel thread is

a bijection. To for example create a new thread, libpthread uses the _lwp_create()

system call, and to put the current thread to sleep awaiting wakeup, _lwp_park()

is called.

To support the NetBSD pthread library on top of the threads offered by bmk, we

implemented the _lwp interfaces against bmk in lib/librumprun_base/_lwp.c.

After that, we could use NetBSD’s libpthread to provide pthreads on Rumprun.
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As an implementation detail, as of writing this, _lwp.c is implemented as libc-level

symbols in the userspace package (rumprun base). Henceforth, software wanting to

bypass libc and use the lwp interfaces to implement their own threading, e.g. the

Go runtime, must include userspace support. This feature may be fixed at a future

date by pushing the implementation of the lwp interfaces into the rump kernel.

Limitations

Recall, rump kernels do not support virtual memory or preempting threads. There-

fore, rump kernels do not provide memory mapping (mmap(), madvise() and friends)

or signals. These two facilities are used by some userspace applications.

For signals, we simply resort to stating “signals are evil”. (There are advantages to

this book no longer being an academic text.) Therefore, any application requiring

signals for basic functionality will not work without porting. Coming up with mostly

functional signal emulation, where handlers are called at select points without pre-

empting threads, may be done at a future date. Regardless of whether that will be

emulated or not, signals still are evil.

We emulate some aspects of memory mapping in the component library located at

lib/librumpkern_mman. Notably, emulation is hooked in as rump kernel syscalls

so that custom applications may use that emulation. Anonymous memory mapping

is simply a matter of allocating the right amount of memory, though Rumprun will

not respect the read/write/execute protection flags. Memory mapping files is more

complicated, since the contents need to be paged in and out. Since there is no virtual

memory, there are no page faults, and contents cannot be paged in on demand. As

of writing this, read-only mapping are emulated by reading in the full contents at

the time of the mapping. While the approach is not perfect in many ways, it allows

a decent set of programs to work in some cases at the cost of a handful lines of code.
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4.2.4 Toolchain

The Rumprun unikernel is always cross-compiled, which means that the build pro-

cess never runs on a Rumprun instance. Instead, the build process runs on a build

host, e.g. a regular Linux system. To [cross-]build software, a toolchain is required.

For custom applications, we have no external standards to bow down towards, nor

do we want to impose any limitations on how to build custom applications. There-

fore, it is up to the builder of the custom application how to build and link the

unikernel image. A straightforward way is to use the toolchain wrappers generated

by buildrump.sh (Section 4.1.1). We will not further discuss toolchains for custom

applications.

For POSIX’y userspace applications, we do have external standards to bow down

to. Application are engineered to build using a build system (e.g. GNU autotools

or CMake). Build systems assume that the toolchain looks a certain way, and that

the build consists of certain steps. Those steps can be for example, probe, build and

link. Recall, in the best case scenario unmodified applications work on a Rumprun

unikernel. It would be convenient if those applications could also be built for the

Rumprun unikernel without having to introduce changes to the build system. That

was the goal of the application toolchain. The rest of the discussion in this section

is on how that goal was accomplished.

The ABI

When building application source code, one must decide which ABI to build for.

That ABI will determine where the program can run. Typically, the ABI is signi-

fied by the tuple ingrained into the toolchain. For example, a x86_64-linux-gnu

toolchain will produce a binary which can run on an x86-64 machine with a Linux
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kernel and a GNU userspace. In other words, there is a machine architecture com-

ponent and a system side component to the ABI. The binary can be run only on a

machine architecture and an operating system which supports the given ABI. The

obvious example of an operating system supporting the Linux-GNU ABI is Linux,

but it is also possible to other operating systems to emulate various ABIs to allow

running programs complied for a non-native ABI.

For Rumprun, we use the same tuple as NetBSD, e.g. x86_64--netbsd, but in-

sert “rumprun” into the otherwise empty vendor field. Therefore, for x86 64 the

ABI tuple of Rumprun is x86_64-rumprun-netbsd. The installed toolchain for

building Rumprun images follows the standard convention of naming binaries, e.g.

x86_64-rumprun-netbsd-ar and x86_64-rumprun-netbsd-gcc. Internally, the

toolchain is a set of wrappers around the toolchain provided by buildrump.sh,

which in turn is a set of wrappers around the toolchain supplied by the user.

The Implementation of the ABI

In the normal case, the operating system implementing the system side of the ABI

is not bundled with the binary. The operating system itself comes to be when a

certain selection of drivers implementing that ABI is booted. Notably, there is no

strict contract between the ABI and which drivers the operating system must provide

for the program to run correctly. A Linux kernel without networking support can

still run Linux binaries, but programs using networking will not run as expected on

that particular Linux instance.

In other words, in the normal model, building & booting the operating system

and building & running applications are separate steps. Normal build systems also

assume them to be separate steps, and do not include a step to determine which

operating system components should be linked into the binary. If we wish normal
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build systems to work without modification, we must address this disparity on our

side.

Pseudo-linking and Baking

One solution for specifying the implementation of the ABI would be to hardcode

the set of rump kernel components into the toolchain and to identify the set in

the toolchain tuple. However, that solution would mean creating a separate set of

toolchain wrappers for every desired component combination, and would be hard

to manage. Another option would be to always include all drivers, but it would be

wasteful, and also possibly would not work — consider situations where you have

two mutually exclusive drivers for the same backend.

A more flexible solution comes from what we call pseudo-linking. When the applica-

tion part of the binary is linked, the operating system components are not attached

to the binary. Instead, the application link phase produces non-runnable intermedi-

ate format, which includes the objects and libraries specified on the link command

line.

The pseudo-link phase checks that all application symbol dependencies are satisfied.

Again, doing so honors existing conventions; this check is required for example by

the probe phase of some build frameworks, which determine if a certain interface is

supported by the given system by trying to link a test program using that interface,

and iff the link succeeds, mark that interface as available. It needs to be noted that

these types of checks apply only to userspace interfaces, and not to the kernel drivers

backing those interfaces, so things may still fail at runtime. However, limiting the

check to userspace interfaces is what current POSIX’y applications expect.

To produce the bootable unikernel image, the pseudo-linked intermediate repre-
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$ cat > hello.c << EOF

> #include <stdio.h>

> int main() {printf("Hello, Rumprun!\n");}

> EOF

$ x86_64-rumprun-netbsd-gcc -c -o hello.o hello.c # compile

$ x86_64-rumprun-netbsd-gcc -o hello hello.o # pseudo-link

$ rumprun-bake hw_virtio hello.bin hello # bake

Figure 4.4: Building a runnable Rumprun unikernel image. The different
phases of the build are illustrated. First, the object files are compiled. Second,
the object files are pseudo-linked. Any objects and libraries specified at this stage
will be carried by the intermediate representation. Finally, the remainder of the
Rumprun stack is baked into the pseudo-linked intermediate representation. In this
example, we used the hw virtio configuration, which contains the I/O drivers for
cloud hypervisors. In case hw generic is specified instead, drivers for bare metal
would be included.

sentation is baked. The baking process attaches the operating system side driver

components to the image, analogous to the normal case where the operating system

implementing the ABI is booted. Baking is done using the rumprun-bake tool.

The entire set of steps require for transforming source code to a bootable unikernel

image is illustrated in Figure 4.4.

Pipelines and Multibaking

Consider the Unix pipeline: a program generates output which is fed to the next

stage in the pipeline as input. Therefore, a program does not need the knowledge

of how to generate the input or how to store the output, as long as the program

has the knowledge of how to process the data. Assume we have such a program

which knows how to process data, but not whence the data is coming or where it

is going to. We wish to support that concept in Rumprun, for example for cases

where POSIX’y programs are used as highly isolated data processors.
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For example, imagine that the user wishes the main program to read input using

HTTP, but the program lacks intrinsic HTTP support. This feat would be accom-

plished on a regular system with e.g. “curl http://add.ress/input | prog”.

There are a few possible routes to support the same in Rumprun. We will discuss

some of those possibilities before discussing the option we chose.

• adjusting the main program: our guiding principle throughout this entire

work is to avoid unnecessary forking and modification. In some cases teaching

the main program may be necessary, for example when processing multiple

small files is desired. However, for this discussion we will consider adding

knowledge of HTTP to the main program as a last resort.

• use of a file system driver: a file system is akin to a system-side pipeline,

though possessing the additional features of named streams and seeking,

among others. It would be possible to hide the details of HTTP from an

application inside a file system driver. However, due to the above-mentioned

additional features which are usually not not required in a pipeline, file system

drivers require implementing a dozen-or-so methods to have even bare-bones

functionality. Therefore, the implementation effort of what could be accom-

plished with a handful of lines of application code is increased by at least an

order of magnitude.

To solve the pipeline problem, we observe that a rump kernel already supports

multiple processes, as required by remote client support (Section 2.5), and pipes

between those processes (rump_sys_pipe()). Using a regular pipe between the

rump kernel processes allows data to flow between the programs. The remaining

puzzle pieces come from the separation of pseudo-linking and baking. We allow

rumprun-bake to take multiple binaries which are baked into the final executable.

For example, the following command will include both the processor and transporter

in the final runnable binary:
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$ rumprun-bake hw_virtio rumprun.bin processor transporter

This unikernel can then be run so as to imitate the following pipeline:

$ ./transporter r src | ./processor - | ./transporter w dst

Note, in the current implementation the transporter and processor share for example

the same libc state and symbol namespace. Therefore, as of writing this, multibaking

cannot be used to include multiple arbitrary programs in the same Rumprun image.

However, the approach works in cases where the transporter program is judiciously

crafted to suit the purpose. Support for arbitrary programs may or may not be

added at a future date.

4.2.5 PCI: Big Yellow Bus

In Section 3.10 we looked at using USB devices in rump kernels. Ignoring the de-

sirability of that approach, for Rumprun the same approach of relying on a thick

underlying layer is not feasible — the only underlying software layer is bmk. For

Rumprun on x86 hardware(/KVM), the desired peripheral I/O devices are on PCI

busses. To use those devices, we provide PCI bus access via hypercalls, and use the

PCI device drivers provided by the rump kernel for actual device access. The hyper-

calls follow the boundaries of the MI/MD (machine in/dependent) code boundary

in NetBSD. We stress that the discussion in this section is about x86 bare metal.

Essentially there are three classes of hypercalls that are required to support PCI

devices:
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• PCI configuration space access. By accessing configuration space reg-

isters, software can determine which devices are present, alter PCI-specific

behavior of the device, and gain access to the device-specific registers. Con-

figuration space access is done using x86 I/O operations (inl(), outl()).

While those instructions could be used within the rump kernel without re-

sorting to hypercalls, we use hypercalls for the benefit of being able to share

the PCI code with other platforms which are not described here.

• Interrupt handling. Establishing an interrupt means that when an inter-

rupt is triggered on the CPU, the corresponding interrupt handler gets called

to inspect the device. While the process is simple in theory, a problem arises

from mapping the device’s idea of an interrupt line to the corresponding line

detected by the CPU. Most systems attempt to establish this relationship by

parsing the relevant ACPI tables. We take a simplistic approach which does

not require thousands of lines of code: since there are typically only 1-2 PCI

I/O devices on a given Rumprun instance, we assume that all devices share

an interrupt and call all handlers when any PCI interrupt arrives. We may

include proper support for interrupt routing at a future date, if a need arises.

• DMA-safe memory handling. DMA is not a PCI-specific construct, but

since PCI devices are the only devices on Rumprun which do DMA, we discuss

DMA here. Essentially, DMA is a matter of being able to allocate “DMA-

safe” memory. In practice, safety means physically contiguous memory which

is allocated according to certain boundary and alignment constraints. The

boundary constraint means the range must not cross a certain multiple, and

alignment means that the range must start from the multiple. Since bmk

uses 1:1 mapped memory, any contiguous address range is also physically

contiguous.

In theory, NetBSD PCI drivers may request to allocate DMA memory in

multiple physical segments and then map those segments to a virtually con-

tiguous range in the kernel VA. A general solution for such a mapping needs
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virtual memory support; however, we have not yet come across drivers which

would use this functionality, and hence have not felt a need to solve the

unencountered problem.

4.3 rumpctrl

A normal operating system is configured for operation and inspected at runtime

by a selection of userspace utilities. Examples of these utilities on NetBSD include

ifconfig, mount, sysctl and raidctl. Those utilities are useful for controlling

and monitoring the runtime state of for example the Rumprun unikernel. From our

discussion in Section 3.12, we know that we can run such binaries as remote clients.

However, the problem arises from where to host such binaries.

On a NetBSD system, the right set of utilities are available as regular host binaries,

and we can run those binaries as hijacked remote clients (Section 3.12.6). The system

calls and data structures used by the utilities are non-portable, and mechanisms such

as ioctl(), sysctl() and the routing socket are used. Therefore, it is highly non-

trivial to port and compile those utilities on other operating systems. Furthermore,

the system call interfaces used by the utilities evolve as the capabilities of the kernel

drivers evolve, and therefore it is not enough to port the utilities once. In effect, the

utilities cannot be used on non-NetBSD systems and porting the utilities to those

systems involves the porting work and continuous maintenance work.

One possibility would be to require running the control utilities on a NetBSD system,

perhaps in a virtual machine. However, that would be against our principle of

convenience for the user.

The solution comes from running a unikernel-like stack in userspace coupled with

remote system calls (librumpclient). Notably, no hijacking of system calls is
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NetBSD libc
syscall traps

control application

userspace libraries

host (libc etc.)

librumpclient

local client

rump kernel

librumpuser

platform
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rump kernel syscalls

Figure 4.5: Architecture of rumpctrl. The stack on the left is the rump kernel
stack being controlled. That stack may or may not include a local client. For
example, a Rumprun unikernel instance is likely to include a local client, while
rump_server (Section 3.12.3) will not. The stack on the right runs in POSIX
userspace, and communicates with the rump kernel over a sysproxy transport.

required since system calls are directed against the rump kernel by default, just like

in the case of Rumprun. To avoid collisions between the host’s libc and the NetBSD

libc, careful symbol renaming is performed during the build stage. The architecture

of the solution is depicted in Figure 4.5.

The usage of rumpctrl follows the same principles as remote clients (Section 3.12.2);

the environment variable RUMP_SERVER contains the URL which points the client

to the server. Additionally, rumpctrl provides a source’able script which sets the

rumpctrl commands at the front of PATH. In the following demonstration we have a

rump kernel server (in this case a Rumprun unikernel) listening to sysproxy com-

mands on a management interface at 10.0.0.2:12345. Additionally, we demonstrate

the rumpctrl_listcmds command, which prints the commands provided by rumpc-

trl.
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$ . rumpctrl.sh

rumpctrl (NULL)$ sysctl hw.model

error: RUMP_SERVER not set

rumpclient init failed

rumpctrl (NULL)$ export RUMP_SERVER=tcp://10.0.0.2:12345

rumpctrl (tcp://10.0.0.2:12345)$ sysctl hw.model

hw.model = rumpcore (virtual)

rumpctrl (tcp://10.0.0.2:12345)$ rumpctrl_listcmds

arp ed mkdir newfs_ext2fs rndctl

cat fsck mknod newfs_msdos route

cgdconfig fsck_ext2fs modstat npfctl rtadvd

chmod fsck_ffs mount pax sysctl

chown fsck_msdos mount_ext2fs pcictl umount

cp halt mount_ffs ping vnconfig

dd ifconfig mount_msdos ping6 wlanctl

df ktrace mount_tmpfs raidctl wpa_passphrase

disklabel ln mv reboot wpa_supplicant

dump ls ndp rm

dumpfs mixerctl newfs rmdir

4.4 fs-utils

Fs-utils [60] (http://repo.rumpkernel.org/fs-utils) is a suite of userspace file

system utilities (hence the name) which intrinsically contain file system drivers; the

utilities do not use file system drivers from the host kernel. The motivations for

building such a suite are the usual: running the file system driver in userspace does

only not depend on having support in the host kernel, but also does not risk a host

kernel compromise in case of a corrupt or maliciously corrupted file system image.

In the permissions department, read and optionally write permissions to the image

are enough, no elevated permissions are needed by the user running the utilities.

The implementation of fs-utils consists of standard standard NetBSD file utilities

(ls, cat, mv, etc.) which use rump kernel file system drivers as local clients. Doing

so preserves the normal usage of the utilities, e.g. ls accepts the familiar -ABcFhL

parameter string.

http://repo.rumpkernel.org/fs-utils
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The only exception to command line arguments is that the first parameter is inter-

preted as the location specifier the file system is mounted from. The tools make

an attempt to auto-detect the type of file system, so passing the file system type is

optional. For example, fsu_ls /dev/rwd0a -l might list the contents of a FFS on

the hard drive, while fsu_ls 10.181.181.181:/m/dm -l would do the same for

an NFS export 10.

Alternative ways of implementing such a file system utility suite are to write or port

the file system drivers, or use full operating systems in virtual machines. Those

approaches are demanding in terms of programming work or runtime resources,

respectively.

4.5 Summary

In this chapter we examined the ecosystem of tools and products built on top of rump

kernels. At the center of the ecosystem is the buildrump.sh script, which allows

building rump kernels on any POSIX-like system for a variety of targets. We dis-

cussed examples of what to build on top. One example was the Rumprun unikernel,

which allows running POSIX’y applications on bare metal and the cloud. Another

example was the fs-utils tool suite, which consists of tools capable of accessing and

modifying file system images.

10 In case of NFS, the sockin networking facility (Section 3.9.1) is used, so no TCP/IP stack
configuration is required.
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5 Short History

This chapter gives a short overview of the history of rump kernels and the events

that lead to the current situation. The intention is to provide reasonable amounts of

insight into why things evolved like they did. This chapter is written in chronological

order on a high level, but we attempt to discuss one subject matter in one go, so

there is no timeline in the strict sense.

We will use the late 2006 to early 2007 period as the starting point for the story.

Back then, work was done on the puffs userspace file systems framework in NetBSD.

This work led to key observation for rump kernels: it is very easy to implement a

superficially working file server in userspace because a crash does not mean the end

of everything. However, if the file server is supposed to be both performant and

robust, things get very complicated even in userspace. In effect, the difference that

userspace offers is the immeasurably nicer development environment.

The next logical question to raise was if there is any fundamental reason that kernel

file systems cannot be developed in userspace without having to perform back-and-

forth porting of the drivers between userspace interfaces and kernel interfaces. Given

that you are reading this document, the answer is: no.

5.1 First Steps

In summer 2007, running NetBSD’s kernel FFS driver as a puffs userspace server

was made possible. The guideline for the work was that the FFS driver must remain

unmodified, and various shims be built for linking and running the driver. Making

the unmodified FFS driver work in userspace took approximately two weeks. A

good part of that time was spent fixing bugs in the shim that translated file offsets



198

to backing device block numbers (getpages, putpages & bmap). Translating offsets

sounds simple enough, but when you have to take into account the sizes of device

blocks, file system blocks and memory pages, along with potentially extending the

file, things start getting complicated.

Originally, the working name for rump kernels was sakern, which was officially sup-

posed to mean “standalone kernel”. Unofficially, it was supposed to be a reference

to the Swedish language and mean “things”, denoting the slightly messy nature of

the shims. The name was changed to RUMP before import to the NetBSD source

tree. Later, that “backronym” would be dropped in favor of “rump kernels”. For

consistency, we will simply use “rump kernels” throughout this section, instead of

altering the nomenclature based on which timeframe we are talking about.

In August 2007, rump kernels were introduced into the NetBSD source tree. At

that time, there was support for a number of file systems which could run as puffs

servers. Support for running the file drivers as standalone programs was yet not

available, since there was no support for the top layers of the kernel. For example,

the namei part of the namei+lookup ping pong game was handled by puffs in the

host kernel, and rump kernels only supported lookup performed by individual file

system drivers.

Also around the same time, the first steps were taken to run NetBSD kernel code on

non-NetBSD hosts. Some assumptions about the host being NetBSD were addressed

and fixed, and a mental note was made about what was required for supporting non-

NetBSD platforms. At that time, building for non-NetBSD required huge amount of

manual work, and it would not be until late 2012 when buildrump.sh was introduced

that building any given vintage of rump kernels for non-NetBSD platforms would

be made easy.
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5.2 Towards Robust and Maintainable

Hacking up something that runs is not difficult. The real challenge is in making

things maintainable in a system under constant development. While the shims made

it possible to run kernel drivers from one vintage of NetBSD, the shims would even-

tually go out-of-date and cause compile-time and runtime failures. Since NetBSD

kernel code will not go out-of-date with itself, shims were slowly replaced by using

NetBSD kernel code directly. Figuring out which interfaces need to implemented

as shims, and which interfaces can be used directly from NetBSD sources ended

up being a multi-year effort. The general principles on what to reuse and what to

rewrite have been more or less clear since 2011 and the core technology has not

changed since then.

Another area that needed improvements was multithreading support. Initially, rump

kernels did not support locking, synchronization, or anything that interacted with

the scheduler. This was fine for file system drivers, because most of them use only a

single thread, and simply ignoring most of the aspects of locking was enough. The

problem with that approach was of course that it was not good enough to support

any given kernel driver, and neither could it be used to exercise the multithreading

robustness of file system drivers.

Most of the support for multithreading was added later in 2007. Support for kernel

threads and locking and was relatively straightforward to add. The hard part of

multithreading support was figuring out how the inverse scheduling model should

be handled — normally operating systems pick a thread to schedule on a core,

but rump kernels schedule a virtual core for a thread. The original design of the

scheduler was done on an airplane napkin in 2009, but coming up with a deadlock

free implementation was anything but trivial. It took over a year to successfully

implement the design.
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5.3 Syscall Support

As mentioned, in the beginning rump kernels supported only file servers, and those

accessed the kernel drivers directly at the in-kernel virtual file system layer. Hence,

there was no need to support the POSIX-style system call interfaces.

However, as application possibilities such as fs-utils were being imagined, the ne-

cessity for a syscall-like interface grew. One early attempt at a syscall-like facility

was ukfs (or “userspace kernel file system”). It implemented enough of the top half

of the kernel for syscall-like pathname-based access to file systems to be possible.

While ukfs worked for file systems, it had issues:

1. The implementation of the top half, especially namei, is complex, so getting

it right was non-trivial.

2. The interface was not quite syscall-like, which necessitated writing applica-

tions specifically for ukfs instead of being able to use existing applications

against rump kernels in a library-like fashion.

3. ukfs was specific to file systems and did not address other subsystems such

as the networking stack.

To remedy this, the top levels of the kernel, including a subset of the system call

handlers and namei, were added to rump kernels in the beginning of 2008. One

mistake was originally made with the introduction of the rump kernel syscall inter-

face. To avoid the implicitly thread-local quality of the errno variable, each system

call interface in the rump kernel syscall API took an extra “int *error” parameter

for returning the error. This approach made it difficult to use existing applications

against the rump kernel syscall API, since the application side required modifica-

tion. It took almost a year for work to progress far enough for the extra parameter
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to become a problem. The extra error parameter was removed in January 2009

now making the rump kernel syscall API and ABI equal to the one provided by the

NetBSD libc.

As for ukfs, the homegrown pieces were removed, and the interface was implemented

on top of rump kernel syscalls. For some years, ukfs was intended to become a

portable interface for accessing file systems, i.e. one which does not suffer from

type incongruence between the rump kernel and the host (think of the canonical

“struct stat” example). However, ukfs is now considered all but an obsolete early

experiment on the road of figuring out how to best do things.

5.4 Beyond File Systems

From the start, the idea was to support multiple kernel subsystems with rump

kernels. This is evident also from the directory structure of the initial 2007 import:

file systems were in sys/rump/fs.

It took over a year from the initial import in 2007 for support for another subsystem

to appear. The natural choice was networking, since it was required by NFS, and

support was added in late 2008. As part of the initial networking support, a virtual

network interface to access the network via the host’s Ethernet tap device was added.

The idea was to provide network access, not to necessarily be fast. Support for the

fast userspace packet I/O frameworks DPDK and netmap emerged in 2013 — not

that those frameworks even existed back in 2008.

Beyond file systems and networking, the remaining major source of drivers is for

devices. These were the last major set of drivers for which rump kernel support

was added. The first steps were taken in mid-2009 with the support of the kernel

autoconfiguration framework in rump kernels. Later in 2009, the first experiments
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with driving actual devices was taken in the form USB devices. Even so, the USB

implementation did not touch raw devices, and depended on the USB host controller

driver being supported by the host. Support for real device drivers appeared first

in 2013 with PCI device support under Xen.

5.5 Symbol Isolation

If code is compiled and linked into a non-freestanding environment, there is a risk of

symbol collisions. For example, consider hosting rump kernels in userspace: both the

rump kernel and host libc provide a function called malloc(). However, the kernel

malloc of NetBSD has a different signature, and takes e.g. a flag parameter which

specifies whether or not the returned memory should be zeroed. In early versions of

rump kernels, kernel and userspace symbols were haphazardly linked together. For

example, if the kernel malloc is serviced by the libc implementation, the flags will be

ignored and potentially non-zeroed memory will be returned. Amusingly enough, it

took a few months before a bug was triggered by malloc not zeroing memory even

if it was expected to.

Early attempts at avoiding symbol collisions were done in an ad-hoc fashion. For ex-

ample, malloc was dealt with by using the --wrap flag in the linker, and for example

the kernel valloc() routine was renamed the vnalloc() to avoid a collision with

userspace. The exact set of conflicting symbols, however, depend on the platform,

so the early attempts were never considered anything more than bandaid.

The real solution came in early 2009 with mass symbol renaming: at build-time, all

symbols in a rump kernel are mass renamed to start with the prefix “rump”. While

doing so solved the collision problem, the renaming also had a much more profound

implication. After symbol renaming was instated, the rump kernel was now a closed

namespace; a rump kernel could only access routines within itself or in the hypercall



203

layer. We now knew for certain that a rump kernel would not block without making

a hypercall. This knowledge led to understanding the required scheduling model.

Furthermore, hypercalls now defined the portability interface for rump kernels.

5.6 Local Clients

One of the things to figure out about the scheduling of rump kernels was where and

how to decide which process and thread context the currently executing host thread

possesses in the rump kernel. Originally, and heavily influenced by the original file

server mode of operation, it was completely up to the client to specify the PID and

thread ID. Having the client select the PID allowed for the file server to operate

with the same process context as the original operation in the host kernel. Having

the same PID meant that errors produced by the fs driver in the rump kernel, e.g.

“file system full”, reported the correct host PID that had caused the malfunction.

The downside of the “client decides” approach was that the client had to decide even

if it did not want to, i.e. there was no simple way for the client to say “I want a new

process for a new set of file descriptors, don’t care about the PID”. The end result

of all of this was that emulating things like fork and exit for remote clients would

have been close to impossible.

Figuring out a sensible interface for deciding the current context took many years of

development and 3 or 4 rewrites of the interface. In 2010, the lwproc set of interfaces

was introduced, along with the concepts of implicit and bound threads, marking a

big milestone in defining the unique characteristics of rump kernels.
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5.7 Remote Clients

The first experiments with remote clients were done in early 2009. However, it took

over 1.5 years for a revised implementation to appear. Unlike in the case of the

scheduler, the delay was not due to the code being complicated to figure out. On

the contrary, it took so long because writing RPC code was boring.

While remote clients showed that it is possible to use Unix as a distributed OS

without requiring a complete Plan 9-like implementation from scratch, that was

not the main goal of remote clients. Support for remote clients made it possible

to configure a rump kernel in a more natural way, where a configuration program

is run with some parameters, the program performs some syscalls on the kernel,

after which the program exits. Before remote clients, any configuration code was

run in a local client, usually written manually. This was not a huge problem for file

systems, since the configuration is usually just a matter of calling mount(), but for

configuring the network stack, not being able to use ifconfig, route and friends

was becoming an issue.

5.8 Shifting Focus Towards Driver Reuse

In early 2011, rump kernels were declared complete; the basic infrastructure required

by portable kernel drivers had been figured after about four years more of more

or less full-time work. The declaration also marked the end of most of the work

taking place in the NetBSD source tree, since the main architecture of rump kernels

had been defined. Given that the goal is to stick to unmodified NetBSD source

code, a decent amount of work still goes on directly in the NetBSD tree, but other

development loci are emerging.
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The first major landmark was the introduction of the buildrump.sh script in late

2012. The importance of buildrump.sh was in that for the first time it was simple to

build a given NetBSD source vintage for a non-NetBSD platform. Buildrump.sh was

also the first piece of code to be committed onto GitHub to what would eventually

become the rumpkernel organization.

The shift toward driver reuse also brought a completely new focus for development.

Earlier, when debugging was the main motivation, the main focus was making rump

kernels convenient. A good example of this attitude are the implicit threads provided

by the rump kernel scheduler: if you do not know about bound threads or do not care

to manage them, the default implicit threads will always work correctly, though they

do not perform well. With driver reuse, and especially with networking, it started

being important to be as performant as possible. Improving performance is still

on-going work, but steps such as improving the performance of curlwp have been

done in 2014. In fact, the old and new goals conflict slightly, because with implicit

threads things will work just fine, but unless you know about bound threads, you

will be losing a good deal of potential performance.

5.9 We’re not in Kansas Anymore

Up until late 2012, rump kernels were only able to run in userspace processes.

Support was mostly limited to NetBSD and Linux at the time, but it’s a small hop

from one userspace to another (though the amount of details involved in those small

hops is rather dumbfounding). The challenge was to evaluate if rump kernels could

run on top of literally anything.

The first non-userspace platform ended up being a web browser, with kernel drivers

being compiled to JavaScript instead of the usual assembly. That experiment was

both a success and a failure. It was a success because rump kernels ran smoothly in a
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web browser when compiled with a C→JavaScript compiler. It was a failure because

the compiler provided emulation for the POSIX interfaces, and the existing rump

kernel hypercalls could be used. In essence, a rump kernel running as JavaScript in

a web browser still worked more or less like when running in userspace.

The second non-userspace experiment was undertaken in early 2013. It was a bit

more successful in choosing a decidedly non-POSIX platform: the Linux kernel.

There were no big surprises in getting rump kernels running on the Linux kernel. One

interesting detail was the i386 Linux kernel being compiled with -mregparm=3. That

compiler parameter controls how many function arguments are passed in registers,

with the rest being passed on the stack. If the rump kernel components are not

compiled with the same parameter, the ABIs do not match, and chaos will result.

The same concern applies to routines written in assembly. The discrepancy is not

insurmountable, merely something that needs to be noted and addressed where

necessary. Another useful thing that came out of the Linux kernel experiment was

minor improvements to the rumpuser hypercall interface. The hypercall interface

has remained the same since then.

Even though the Linux kernel is not a POSIX environment, it still resembles userspace

a fair deal: there are scheduled threads, synchronization primitives, etc. To further

test the portability of rump kernels, a hypercall implementation for the Xen hy-

pervisor was written in summer 2013. Since the Xen hypervisor is a bare-bones

platform without the above mentioned userspace-like synchronization and multipro-

cessing features, it would test rump kernel portability even more than the Linux

kernel did. Granted, the hypercalls were written on top of the Xen MiniOS instead

of directly on top of the hypervisor, but MiniOS is there only to provide bootstrap-

ping support, access to paravirtualized devices and MD code for stack switching.

All in all, that platform was more or less like running rump kernels directly on top

of bare metal.
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The Xen platform was also the first to support running a full application stack on

top of a rump kernel, including libc and other userspace libraries. Earlier, clients

used rump kernels only as libraries, but especially standard applications depended

also on the functionality provided by the host system. With additional work, it

became possible to run off-the-shelf programs fully on top of rump kernels. The

Xen platform was also the first time that a rump kernel was fully in control of the

symbol namespace, instead of integrating into an existing one. Notably, not having

to integrate into an existing namespace is technically simpler than having to, but it

was useful to verify that rump kernels could cope nonetheless.

The first third party rump kernel hypercall implementation was done by Genode

Labs for their Genode OS Framework. Support was first released as part of Genode

14.02, which in a highly mnemonic fashion was released in February 2014. Other

third parties building OS and OS-like products have since started looking at rump

kernels for driver support.

The final frontier, even if traditional operating systems it was the first frontier, was

booting and functioning on bare metal. Support for x86 bare metal was written

in August 2014. The implication of bare metal was also being able to support a

number of virtualization platforms, e.g. KVM, which unlike paravirtualized Xen are

bare metal except with alternative I/O devices. That said, the bare metal platform

first supported only real I/O devices (e.g. the E1000 NIC instead of a virtio NIC),

and virtual ones were added only later when the applicability for the cloud started

becoming apparent.

The bare metal and Xen platforms were hosted in separate repositories for a long

time, but eventually it became apparent that they consisted mostly of the same

bits, and cross-porting changes from one to the other was becoming taxing. The

repositories were combined in early 2015 and the resulting repository was called

“Rumprun software stack”. The arduous process of merging the diverged code-
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bases was completed in April 2015. The same month the name was changed from

“Rumprun software stack” to “Rumprun unikernel”. For one, the change brought

synergy with the growing unikernel trend, but the more important implication of

using an established term was making it easier to explain Rumprun to newcomers.

5.10 Summary

The initial implementation of rump kernels built around file system drivers was

minimalistic. Throughout the years the interfaces and implementation were modified

to achieve both better client-side usability and maintainability. Introducing features

and dependencies was avoided where feasible by critically examining each need.

Eventually, stability was achieved.

The second phase was to show the value of rump kernels for providing production

quality drivers. This phase was conducted by experimenting with using rump kernels

as building blocks on various platforms.
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6 Conclusions

A codebase’s real value lies not in the fact that it exists, but in that it has been

proven and hardened “out there”. The purpose of this work is harnessing the power

and stability of existing in-kernel drivers.

We defined an anykernel to be an organization of kernel code which allows the ker-

nel’s unmodified drivers to be run in various configurations such as libraries, servers,

small standalone operating systems, and also in the original monolithic kernel. We

showed by means of a production quality implementation that the NetBSD mono-

lithic kernel could be turned into an anykernel with relatively simple modifications.

The key point is retaining the battle-hardened nature of the drivers.

An anykernel can be instantiated into units which include the minimum support

functionality for running kernel driver components. These units are called rump

kernels since they provide only a part of the original kernel’s features. Features not

provided by rump kernels include for example a thread scheduler, virtual memory

and the capability to execute binaries. These omissions make rump kernels straight-

forward to integrate into any platform that has approximately one megabyte or more

of RAM and ROM. Alternatively, entirely new software stacks built around rump

kernels are possible to execute with relative ease, as we explored with the Rumprun

unikernel.

As the parting thoughts, we remind ourselves of why operating systems have the

role they currently have, and what we should do to move forward.

The birth of timesharing operating systems took place over 50 years ago, an era

from which we draw even the current concept of the operating system. Back then,

hardware was simple, scarce and sacred, and those attributes drove the development
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of the concepts of the system and the users. In the modern world, computing is done

in a multitude of ways, and the case for the all-encompassing operating system has

watered down.

The most revered feature of the modern operating system is support for running

existing applications. We can harness that power through rump kernels. Therefore,

there is no reason to cram a traditional operating system into every problem space.

Instead, we should choose the most suitable software stack based on the problem at

hand.
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