

2

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-

art features:

with over six million downloads,

Freenas is undisputedly the most

popular storage operating system

in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

»
»

»

»

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u

Freenas 2u

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

3

FREENAS MINI
STORAGE APPLIANCE

IT SAVES YOUR LIFE.

How important is your data?

Years of family photos. Your entire music
and movie collection. Office documents
you’ve put hours of work into. Backups for
every computer you own. We ask again, how
important is your data?

now imaGinE LosinG it aLL

Losing one bit - that’s all it takes. One single bit, and
your file is gone.

The worst part? You won’t know until you
absolutely need that file again.

tHE soLution

The FreeNAS Mini has emerged as the clear choice to
save your digital life. No other NAS in its class offers
ECC (error correcting code) memory and ZFS bitrot
protection to ensure data always reaches disk
without corruption and never degrades over time.

No other NAS combines the inherent data integrity
and security of the ZFS filesystem with fast on-disk
encryption. No other NAS provides comparable power
and flexibility. The FreeNAS Mini is, hands-down, the
best home and small office storage appliance you can
buy on the market. When it comes to saving your
important data, there simply is no other solution.

Example of one-bit corruption

the mini boasts these state-of-the-

art features:

with over six million downloads,

Freenas is undisputedly the most

popular storage operating system

in the world.

Sure, you could build your own FreeNAS system:
research every hardware option, order all the
parts, wait for everything to ship and arrive, vent at
customer service because it hasn’t, and finally build it
yourself while hoping everything fits - only to install
the software and discover that the system you spent
days agonizing over isn’t even compatible. Or...

makE it Easy on yoursELF

As the sponsors and lead developers of the FreeNAS
project, iXsystems has combined over 20 years of
hardware experience with our FreeNAS expertise to
bring you FreeNAS Certified Storage. We make it
easy to enjoy all the benefits of FreeNAS without
the headache of building, setting up, configuring,
and supporting it yourself. As one of the leaders in
the storage industry, you know that you’re getting the
best combination of hardware designed for optimal
performance with FreeNAS.

Every Freenas server we ship is...

»
»

»

»

As one of the leaders in the storage industry, you
know that you’re getting the best combination
of hardware designed for optimal performance
with FreeNAS. Contact us today for a FREE Risk
Elimination Consultation with one of our FreeNAS
experts. Remember, every purchase directly supports
the FreeNAS project so we can continue adding
features and improvements to the software for years
to come. And really - why would you buy a FreeNAS
server from anyone else?

 Freenas 1u

Freenas 2u

Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.Intel, the Intel logo, Intel Atom and Intel Atom Inside are trademarks of Intel Corporation in the U.S. and/or other countries.

FREENAS
CERTIFIED
STORAGE

http://www.iXsystems.com/mini http://www.iXsystems.com/storage/freenas-certified-storage/

Editor’s
Word
Dear Readers,

During such rainy days, I presume we all have a lot of time to read more and more. I hope so, and I wish that.
However, I know that you are very busy at work, therefore, the weather is not a good indicator to reach this
conclusion, especially now that we are almost ushering the year 2018. The days which are left are undisputedly
the busiest days before us. However, I hope that the BSD Magazine will feature on your reading list since we
believe you have been waiting for it.

In this issue, we present you an article written by Abdorrahman Homaei on Military-Grade Data Wiping In
FreeBSD With BCWipe. You will not only learn how to install BCWipe but also to install BCWipe With
Multithreaded Mode Enabled. You will know more about BCWipe advanced features and BCWipe in action.
Besides, there is an article I would like to recommend which will give you more insight into a file system. The
author, George Siju, will tell you about HAMMER File System Volumes Management and Pseudo File Systems
Mirroring in DragonFlyBSD.

If you would like to learn more about Unix techniques, then Mark Sitkowski’s article is worth a read. Reading his
article will get you acquitted on how to examine the design of a queuing system, loosely modelled on that used
by IBM, in its WebSphere MQ Series.

To add to your reading list, there is this interesting article titled OpenBSD From a Veteran Linux User
Perspective by Carlos Fenollosa, solely based on his own experiences, which are quite fascinating and
resourceful as well. His experience has been an eye-opener to many. That’s why we thought it was worthwhile
to share them with you, our reader. In his sharing, he considers himself an "old-school" Linux admin, and he’s
felt out of place with the latest changes to the system administration. It’s interesting to see how he appreciates
modernity. Carlos also agreed to answer a few interesting questions. Therefore, you have a chance to read a
really great interview with him.

Of course, that is not all we have in this month’s BSD issue. Please, go to the next page to see a full list of
publication. I hope you will enjoy reading each one of them, and anticipating for the coming articles in October.

Lastly, I would like to express my sincere appreciation to the BSD team members for reviewing and
proofreading, and iXsystems for their constant support and time to make this edition a success.

If you have any suggestions or advices that you want to share with the BSD readers, please, feel free to send
your emails to me. And now, let’s read the articles.

Enjoy! 
Ewa & The BSD Team 
ewa@bsdmag.org

4

mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org

IN BRIEF

In Brief 07 
Ewa & The BSD Team  
This column presents the latest news coverage of
breaking news, events, product releases, and
trending topics from the BSD sector.

SECURITY

Military Grade Data Wiping In FreeBSD With
BCWipe 11 
Abdorrahman Homaei 
Data wiping is a process of overwriting data on
magnetic hard disk, SSD or USB flash by using
zeros and ones on whole disk or specific zone. As a
result, no one can recover the sensitive data and
disk is still usable. You will not only learn how to
install BCWipe, but also to install BCWipe With
Multithreaded Mode Enabled. You will also know
more about BCWipe advanced features and BCWipe
in action.

DRAGONFLYBSD

HAMMER File System Volumes Management 
and Pseudo File Systems Mirroring in
DragonFlyBSD 15 
George Siju 
In DragonFlyBSD, the HAMMER filesystem allows us
to perform functions akin to Logical Volume
Management in Linux like adding and removing
volumes from Volume Group or Pools, creating
Logical Volumes with separate file systems, taking
Logical Volume snapshot, etc. The reason for the
choice of DragonFlyBSD and HAMMER file system
was described in a previous article. A third article will
follow describing PFS and snapshots management.

FREEBSD

Transparent Flow Mapping for NEAT 27 
Felix Weinrank 
The NEAT library provides application developers
with a unified and platform independent API for
network communication, regardless of the
underlying network protocol. Felix describes an
approach to integrate multiplexing functionality into
the NEAT library, giving application developers a

simple way to use the benefits of mapping multiple
data streams to a single transport connection
without additional coding effort.

UNIX

Advanced Unix Queuing Techniques 37 
Mark Sitkowski 
Following the discussion of some of the types of
queuing mechanisms available on Unix, it may be
beneficial to examine the design of a queuing
system, loosely modeled on that used by IBM, in its
WebSphere MQ Series.

BLOG PRESENTATION

OpenBSD 
From a Veteran Linux User Perspective 51 
Carlos Fenollosa  
For the first time I installed a BSD box on a machine I
controlled. The experience has been eye-opening,
especially since I consider myself an "old-school"
Linux admin, and I've felt out of place with the latest
changes on system administration.

INTERVIEW

Interview with Felix Weinrank 59 
Ewa & The BSD Team 
Felix Weinrank is a computer scientist from
Germany. He is currently a Ph.D student in the
Department of Electrical Engineering and Computer
Science at Münster University of Applied Sciences.
His research interests include the SCTP transport
protocol, low-latency Internet communication, and
network emulation.

COLUMN

The gig economy giant, Uber, has had its
operating licence suspended by Transport for
London. Apart from concerns over the way the
company operates, a more sinister reference was
made to Greyball software which effectively
tricks law enforcement and those Uber does not
wish to deal with. Where should the line be drawn
between good practice and deception? 61 
Rob Somerville

5

Table of Contents

6

www.balabit.com

Among clouds

 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second

zero message loss due to the

Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition

product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

IN BRIEF

Building MariaDB on FreeBSD

You can just use the MariaDB ports in the FreeBSD
ports tree using the following pattern:
databases/mariadb(55)?-{client,server}. You can also
use precompiled packages when available.

MariaDB can be compiled with spinlocks instead of
mutexes. This option enables MariaDB "fast
mutexes". These have disabled by default for a a
number of years, and it's generally recommended
not to use them.

Source:
https://mariadb.com/kb/en/library/building-mariadb-
on-freebsd/

The Private Cloud Enabled by
TrueNAS : Open for Business

March 14, 2006 marks an important date in the
history of the IT abstraction known as the cloud. On
this day, Amazon introduced the S3 (Simple Storage
Service) to the world and things have never been the
same. Fast forward to August, 2017 and Amazon’s
cloud service, of which S3 is a large part, is a $14.6B
business and is growing at a rate of more than 50%
per year. Unlike unified storage, which stores and
manages data as files or blocks, S3 stores and
manages data as objects.

2013 was the last time I found a public mention on
how many objects are stored on the Amazon storage
cloud, and that number was 2 trillion. While it is
unclear what that number is today, one can assume
it has since tripled to 6 trillion. To put this number in
perspective, there are currently 7.5 billion people in
the world. Each person could store 800 of those 6
trillion objects. A truly astounding number that will
only continue to increase over time.

The success of the Amazon S3 is due in large part to
the many IT and business benefits cloud storage
provides. Up until very recently, TrueNAS was a fully
unified storage solution providing file and block
protocol support for NFS, SMB, AFP, iSCSI, and
Fibre Channel. TrueNAS 11, released in early July,
added object storage. This means that TrueNAS
customers can now build on-premise clouds that are
fully Amazon S3-compliant. It also means that
services and applications developed for the S3 can
be migrated to TrueNAS, bringing these customers
the benefits of the public cloud in their own data
center.

This is an important development on several fronts.
Despite the rapid adoption of public cloud storage,
many believe the adoption rate would be closer to
universal if it were not for two concerns. One is the

7

https://mariadb.com/kb/en/library/building-mariadb-on-freebsd/
https://mariadb.com/kb/en/library/building-mariadb-on-freebsd/
https://mariadb.com/kb/en/library/building-mariadb-on-freebsd/
https://mariadb.com/kb/en/library/building-mariadb-on-freebsd/

lingering concern over security and the other is the
cost at scale.

Let’s discuss both in detail. Data stored on a public
cloud is on infrastructure that belongs to and is
owned by another entity. This would be Amazon for
S3, Google for its Cloud Platform, and Microsoft for
Azure. This loss of control is a source of concern for
many IT professionals. If an enterprise owns the
physical infrastructure on which its data lives,
safeguards can be taken to prevent unauthorized
access to the storage hardware and the data. Public
clouds are multiuser systems where the data can be
accessed by multiple users and organizations. While
processes are designed and put in place to prevent
the commingling of data, they sometimes fail. We all
have seen or heard in the news where data in the
cloud is exposed. In addition to the significant cost
that a business can incur from data leakage
(especially to a competitor), the business can also be
subject to legal risk if the leakage involves certain
classes of data.

The second concern deals with cost at scale. Since
public cloud storage employs a pay-as-you-go
model, it relieves new businesses from the burden of
having to shell out a large amount of capital to build
on prem storage infrastructure. Fledgling businesses
can pay only for the storage they need and use.
However, this model quickly breaks down as the
business grows and there is more demand for
ongoing storage. Case in point: A big cybersecurity
organization moved from the cloud by using
iXsystems storage and servers to build a private
cloud and saved millions by cutting their Amazon S3
bill by over 80%. A recent iXsystems white paper
covers the true cost of the public cloud in much
greater detail.

Public cloud storage providers charge for their
services in many ways. One is by the amount of data
stored on their cloud, and another is by the quantity
of data retrieved from the cloud. For this exercise,
let’s just consider the Amazon S3 storage cost. If
you were to just store 1TB of data on the S3, the
monthly cost is $26.50. However, if you were to store
100TB of data, the monthly cost is now $2,872.18.
Over three years, the cost of storing 100TB of data
would be $103,398.48. This is based on information
from the Amazon AWS Calculator for the US-West

(Northern California) region. How does that compare
to a physical array from iXsystems? The TrueNAS
X10 has a starting price of $5,500.

So what does this all mean? If you have been using
the public cloud as a data store and have concerns
about security and cost, perhaps it is time to
consider the private cloud option, particularly if you
already own a TrueNAS appliance. Private cloud with
a TrueNAS? Yes. It’s here today and open for
business.

 Steve Wong, Director of Storage Product
Management

Source:
https://www.ixsystems.com/blog/private-cloud-truen
as/

OpenSSH 7.6 Is Ready For
Testing & Finishes Gutting SSHv1

A call for testing has been issued for the upcoming
OpenSSH 7.6 with its release being imminent. This
update to OpenSSH deletes the SSH protocol
version 1 support. Besides removing the rest of
SSHv1 support, OpenSSH 7.6 also nukes some
other old code including support for

8

https://www.ixsystems.com/Large_Scale_Enterprise_Backups_With_TrueNAS_WhitePaper_PDF/
https://www.ixsystems.com/Large_Scale_Enterprise_Backups_With_TrueNAS_WhitePaper_PDF/
https://www.ixsystems.com/blog/private-cloud-truenas/
https://www.ixsystems.com/blog/private-cloud-truenas/
https://www.ixsystems.com/blog/private-cloud-truenas/
https://www.ixsystems.com/blog/private-cloud-truenas/

hmac-ripemd160 MAC, arcfour, blowfish, and CAST
ciphers. RSA keys less than 1024 bits are also
refused.

Source:
https://www.phoronix.com/scan.php?page=news_ite
m&px=OpenSSH-7.6-Coming-Soon

SNIA SDC 2017: 20 Years and Still
Going Strong

The Storage Networking Industry Association’s
Software Developer Summit (SNIA SDC) 2017 took
place just after vBSDcon 2017 from September 11th
through 14th in Santa Clara, California. Developers
and decision makers from the largest storage
vendors in the industry attended this event, and I
found it invaluable to my role as iXsystems Senior
Analyst to attend as well as to speak.

While flash-based storage in all its forms is a
perennial hot topic at the SDC, it has an inevitable
twist: we are steadily making our way back to
byte-addressed persistent storage memory, not
unlike the core memory of the earliest computers but
in orders of magnitude bigger, faster, and cheaper.
The first wave of this movement is the Non-Volatile
Memory (NVM) programming model which is
flash-native, doing away with many layers of
abstraction that allow “spinning rust” to appear as
block devices to a system.

Open-Source had its strongest presence at the SDC
in the organization’s 20-year history. I did my part to
support this by opening the first day with two talks.
The first demonstrated Open-Source as an ideal
strategy for creating reference implementations of
open standards. The second, “Mitigating
Ransomware Attacks at the Block Level with
OpenZFS”, described why FreeBSD and FreeNAS
are great Open-Source solutions for combating the
real-world threat of ransomware while also serving
as excellent reference implementations of open
standards such as network protocols, plus
techniques straight out of the SNIA Dictionary such
as RAID and Replication.

SNIA has a natural preference for
permissively-licensed reference implementations of
the standards they develop, but not a consistent
track record of delivering and maintaining them. This
is changing with their Swordfish storage
management stack that members have prototyped in
Python and AngularJS under an MIT license. If
Open-Source is music to my ears, this is the guitar
solo and I am excited about the organization’s
sharpening focus on Open-Source.

The keynotes on the second day continued the
Open-Source theme with Sage Weil from the Ceph
project and Martin Petersen from Oracle with
“Recent Developments in The Linux I/O Stack”.
OpenZFS specifically came up in an Intel talk when
the researcher reported that the relatively larger
128K default block size of ZFS is optimal for use
with Intel in-CPU encryption accelerators. Allan Jude
of ZFS Book fame looks forward to seeing how even
larger block sizes will perform with Intel crypto.

After flash storage and Open-Source, one hallway
track theme stood out: the impending IoT and

9

https://www.snia.org/events/storage-developer
https://www.snia.org/events/storage-developer
https://www.ixsystems.com/blog/vbsdcon-2017-dexter/
https://www.ixsystems.com/blog/vbsdcon-2017-dexter/
https://www.ixsystems.com/blog/snia-dsi-recap/
https://www.ixsystems.com/blog/snia-dsi-recap/
https://www.snia.org/education/dictionary
https://www.snia.org/education/dictionary
https://www.snia.org/forums/smi/swordfish
https://www.snia.org/forums/smi/swordfish
https://www.michaelwlucas.com/os/fmaz
https://www.michaelwlucas.com/os/fmaz

ransomware bloodbath that will take place on
consumer information devices. Today, from the
recent massive Equifax leak to the barrage of
ransomware attacks at all levels, there are clearly
some valid concerns being raised that warrant
changes in behavior by both users and vendors. One
equal source of both hope and dread is the
European Union General Data Protection Directive
which can be thought of as the “strong crypto” of
personal information privacy. Under the directive,
E.U. countries will be required to establish a system
that allows companies and organizations to report
“potential” data breaches, and to provide their
constituents the ability to erase themselves from any
system containing Personally Identifiable Information
(PII).

This “right to be forgotten” is so attractive that
citizens are already beginning to exercise it and
unfortunately, the directive offers little guidance in
practical implementation and thus will be navigated
in the courts. What is clear is that organizations will
need to appoint a Data Protection Officer to assess
the company’s compliance with the GDPR and
respond to GDPR-related inquiries. From an abuse
perspective however, will criminals be able to
strategically destroy evidence in the name of
privacy? Will identity thieves double as identity
assassins for want of well-defined and proven
security mechanisms for validating information
destruction requests? Will the arrival of employees at
work constitute the potential for personal information
exfiltration? With nine months remaining until the
GDPR directive becomes fully enforceable, will
company policies and vendor solutions be mature
enough for widespread compliance? Finally,
consider that U.S. companies like Google are not
exempt from the GDPR if they collect personal
information from E.U. citizens during the normal
course of business. Rest assured, tools such as
FreeNAS and TrueNAS are here to help both comply
with the GDPR using per-user datasets and
encryption at rest, plus mitigate ransomware attacks
with block-level snapshots and clones.

The real-world challenge of political and mechanical
compliance with the E.U. GDPR is only one example
of the fascinating and timely topics of discussion
within SNIA and is why I find participation in SNIA
events so valuable. Many SNIA members occupy the

top levels of their respective employers yet their
passion drives them to volunteer with SNIA by giving
talks, chairing committees, and organizing events
like the SDC. If this balance of experience, passion,
and willingness to leave your marketing guns at the
door sounds like you, I invite you to learn more
about SNIA and consider joining.

Michael Dexter, Senior Analyst, iXsystems

Source:
https://www.ixsystems.com/blog/snia-sdc-2017/

FreeBSD 10.4-RC1 Now Available

The developers of FreeBSD have made available the
first RELEASE candidate for version 10.4. Check out
the detailed list of changes at the mailing list page.
Download the latest ISO here. Note that RC2 may be
released shortly after the time of this posting.

Source:
https://www.freebsdnews.com/2017/09/22/freebsd-
10-4-beta3/

10

https://arstechnica.com/information-technology/2017/09/why-the-equifax-breach-is-very-possibly-the-worst-leak-of-personal-info-ever/
https://arstechnica.com/information-technology/2017/09/why-the-equifax-breach-is-very-possibly-the-worst-leak-of-personal-info-ever/
http://www.eugdpr.org/
http://www.eugdpr.org/
https://www.nytimes.com/2017/06/27/technology/eu-google-fine.html
https://www.nytimes.com/2017/06/27/technology/eu-google-fine.html
https://edps.europa.eu/data-protection/data-protection/reference-library/data-protection-officer-dpo_en
https://edps.europa.eu/data-protection/data-protection/reference-library/data-protection-officer-dpo_en
http://snia.org/join
http://snia.org/join
https://www.ixsystems.com/blog/snia-sdc-2017/
https://www.ixsystems.com/blog/snia-sdc-2017/
https://download.freebsd.org/ftp/releases/ISO-IMAGES/10.4/
https://download.freebsd.org/ftp/releases/ISO-IMAGES/10.4/
https://www.freebsdnews.com/2017/09/22/freebsd-10-4-beta3/
https://www.freebsdnews.com/2017/09/22/freebsd-10-4-beta3/
https://www.freebsdnews.com/2017/09/22/freebsd-10-4-beta3/
https://www.freebsdnews.com/2017/09/22/freebsd-10-4-beta3/

SECURITY

What Is Data Wiping

Data wiping is a process of overwriting data on
magnetic hard disk, SSD or USB flash by using
zeros and ones on whole disk or specific zone. As a
result, no one can recover sensitive data and disk is
still usable.

Varieties:

1. Software-based wiping

 This type of wiping is carried out by a software that
is installed on the drive.

2. Hardware-based wiping

This type of wiping needs some external device.

Don’t confuse data wiping with file deletion.File
deletion only removes direct pointers to the data and
makes the data recovery possible with common
software tools. Unlike degaussing and physical
destruction, which render the storage media
unusable, data wiping removes all information but
still leaves the disk operable. Data erasure may not
work completely on flash based media such as Solid
State Drives and USB Flash Drives. This is because
such devices can store remnant data which is
inaccessible to the wiping technique. Moreover, the

11

Military Grade Data Wiping
In FreeBSD With BCWipe

Inside

• What Is Data Wiping

• What Is BCWipe

• How To Install BCWipe

• How To Install BCWipe With Multithreaded Mode Enabled

• BCWipe Advanced Features

• BCWipe In Action

data can be retrieved from the individual flash
memory chips in the device.

Wiping software uses many techniques to ensure
data is not recoverable like:

1. German BCI/VSITR 7-pass wiping

2. U.S. DoD 5220.22M 7-pass extended
character rotation wiping with last pass verification

3. U.S. DoE 3-pass wiping

4. 35-pass Peter Gutmann's wiping

5. 7-pass Bruce Schneier's wiping

6. 1-pass wiping by zeroes

What Is BCWipe

BCWipe securely erases data from magnetic and
solid-state memory. BCWipe repeatedly overwrites
special patterns to the files or frees space to be
destroyed. In normal mode, 35 passes are used (of
which 8 are random).The p used were recommended
in an article by Peter Gutmann entitled "Secure
Deletion of Data from Magnetic and Solid-State
Memory". In quick mode, U.S. DoD(Department of
Defence) 5220.22-M standard is used with 7 pass
wiping. In custom mode, U.S. DoD 5220.22-M
standard is used with user defined number of
passes.

How To Install BCWipe

BCWipe is available on FreeBSD ports tree, and you
can easily install it.

make -C /usr/ports/security/bcwipe
install clean

Or, you can install BCWipe with PKG mechanism:

pkg install bcwipe

How To Install BCWipe With Multi-threaded Mode
Enabled

BCWipe has no compile option through FreeBSD
port mechanism. Instead, you can rebuild BCWipe
with multi-threading mode option :

cd /usr/ports/security/bcwipe/

make fetch extract

cd work/bcwipe-1.9-9/

./configure –enable-pthreads

make install clean

BCWipe Advanced Features

Bcwipe has useful features that make wiping
process more suitable.

· -n <delay>

Wait delay seconds between wiping passes. Modern
enterprise level storage systems (NAS, disk arrays
etc.) employ powerful caches. To avoid undesirable
caching effects, BCWipe allows users to insert
adjustable delay between wiping passes. Please
note that when wiping with delay between passes,
the disk space is freed after the last pass.

· -B Disables direct IO mode
when wiping block devices

· -t <threads>

Wipes and verifies block devices in multi-thread
mode. BCWipe runs worker threads. Useful for
wiping multiple disk volumes.

· -S (wipe file slack)

Wipes files’ slack. File slack is the disk space from
one end of a file to the end of the last cluster used
by that file. Cluster refers to the minimal portion of
disk space used by the file system.

· -s Uses ISAAC random number generator by
Bob Jenkins

Default is SHA-1 (Secure Hash Algorithm). ISAAC is
random faster than SHA-1.

· -F (wipe free space) Wipes free space on
specified filesystem.

· -b (block device) Wipes contents of block
devices

12

BCWipe In Action

In this section, we describe a real scenario with
BCWipe.

Issue the following command to get more
information about BCWipe:

bcwipe

Tip: in real-world scenario, people want to wipe out
free space on whole mounted disks (/). However,
the bcwipe command must be issued with caution.

To wipe free space:

bcwipe -F /mnt/

This command will wipe out free space on /mnt/
path or whole mounted disks on this path.

bcwipe -Fv -mt /mnt/

This command wipes out free space on /mnt/
directory with 1-pass in verbose mode.

-mt refer to 1-pass.

To wipe a specific file:

bcwipe -v -mz wipe.me

This command wipes wipe.me file with 1-pass
wiping by zeroes in verbose mode.

bcwipe -Fv -mg -t 5 /mnt/

This command wipes free space on /mnt/ directory
with 35-pass Peter Gutmann's scheme by 5 threads
in verbose mode.

To wipe a specific folder:

bcwipe -rv /tmp/

This command wipes /tmp/ directory recursively
with Peter Gutmann's scheme in verbose mode.

To wipe block device:

bcwipe -v -mz -t2 -b /dev/da0

This command wipes /dev/da0 (USB flash) with 2
threads by 1-pass zeroes in verbose mode.

The point is, USB flash is not mounted and all of the
data will be destroyed.

Conclusion

BCWipe along with FreeBSD give you military-grade
functionalites, ensuring your sensitive data will not
fall into the wrong hands.

Useful Links

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-88r1.pdf

https://www.jetico.com/linux/bcwipe-help/wu_using.
htm

https://www.nsa.gov/resources/everyone/media-des
truction/

https://www.usenix.org/legacy/events/fast11/tech/ful
l_papers/Wei.pdf

https://www.sans.org/reading-room/whitepapers/inci
dent/secure-file-deletion-fact-fiction-631

13

About The Author

Abdorrahman Homaei
has been working as a
software developer
since 2000. He has
used FreeBSD for more
than ten years. He
became involved with
the meetBSD dot ir and
performed serious training on FreeBSD. He is
starting his own company (corebox) in Feb 2017.

Full CV: http://in4bsd.com

His company: http://corebox.ir

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-88r1.pdf
https://www.jetico.com/linux/bcwipe-help/wu_using.htm
https://www.jetico.com/linux/bcwipe-help/wu_using.htm
https://www.jetico.com/linux/bcwipe-help/wu_using.htm
https://www.jetico.com/linux/bcwipe-help/wu_using.htm
https://www.nsa.gov/resources/everyone/media-destruction/
https://www.nsa.gov/resources/everyone/media-destruction/
https://www.nsa.gov/resources/everyone/media-destruction/
https://www.nsa.gov/resources/everyone/media-destruction/
https://www.usenix.org/legacy/events/fast11/tech/full_papers/Wei.pdf
https://www.usenix.org/legacy/events/fast11/tech/full_papers/Wei.pdf
https://www.usenix.org/legacy/events/fast11/tech/full_papers/Wei.pdf
https://www.usenix.org/legacy/events/fast11/tech/full_papers/Wei.pdf
https://www.sans.org/reading-room/whitepapers/incident/secure-file-deletion-fact-fiction-631
https://www.sans.org/reading-room/whitepapers/incident/secure-file-deletion-fact-fiction-631
https://www.sans.org/reading-room/whitepapers/incident/secure-file-deletion-fact-fiction-631
https://www.sans.org/reading-room/whitepapers/incident/secure-file-deletion-fact-fiction-631
http://in4bsd.com
http://in4bsd.com

14

MEET DAVID

Copyright © 2017 iXsystems. TrueNAS and FreeNAS are registered trademarks of iXsystems, Inc. All rights reserved.

HEY GOLIATH...

TRUENAS® PROVIDES MORE PERFORMANCE, FEATURES, AND CAPACITY PER-
DOLLAR THAN ANY ENTERPRISE STORAGE ARRAY ON THE MARKET .

Introducing the TrueNAS X-Series: Perfectly suited for core-edge configurations and enterprise
workloads such as backups, replication, and file sharing.

Unified: Simultaneous SAN, NAS, and object protocols to support multiple applications

Scalable: Up to 120 TB in 2U and 720 TB in 6U

Safe: High Availability ensures business continuity and avoids downtime

Reliable: Uses OpenZFS to keep data safe

Trusted: TrueNAS is the Enterprise version of FreeNAS®, the world’s #1 Open Source SDS

Enterprise: Enterprise-class storage including unlimited instant snapshots and advanced storage

optimization at a lower cost than equivalent solutions from Dell EMC, NetApp, and others

The TrueNAS X10 and TrueNAS X20 represent a new class of enterprise storage. Get the full
details at iXsystems.com/TrueNAS.

DragonFlyBSD

In DragonFlyBSD, the HAMMER filesystem allows us to perform functions akin to Logical Volume Management
in Linux, like adding and removing volumes from Volume Group or Pools, Creating Logical Volumes with
separate file systems, taking Logical Volume snapshot, etc. This activity part of this article was done on a
DragonFlyBSD Installation on a Debian Stretch Linux Kernel Virtual Machine with one 100 GB and four 1 TB
qcow2 hard disks. The reason for the choice of DragonFlyBSD and HAMMER file system was described in a
previous article. A third article will follow describing PFS and snapshots management.

Formating the 4 1TB disks with HAMMER file system

First, let us see our System mount setup soon after installing the DragonFly on the 100 GB hard disk.

dfly1# df -h

Filesystem Size Used Avail Capacity Mounted on

ROOT 76.5G 1267M 75.2G 2% /

devfs 1024B 1024B 0B 100% /dev

/dev/serno/QM00001.s1a 1022M 362M 578M 38% /boot

BUILD 19.5G 219M 19.3G 1% /build

/build/usr.obj 19.5G 219M 19.3G 1% /usr/obj

/build/var.crash 19.5G 219M 19.3G 1% /var/crash

/build/var.cache 19.5G 219M 19.3G 1% /var/cache

/build/var.spool 19.5G 219M 19.3G 1% /var/spool

/build/var.log 19.5G 219M 19.3G 1% /var/log

/build/var.tmp 19.5G 219M 19.3G 1% /var/tmp

tmpfs 236M 0B 236M 0% /tmp

procfs 4096B 4096B 0B 100% /proc

dfly1# mount

ROOT on / (hammer, noatime, local)

devfs on /dev (devfs, nosymfollow, local)

/dev/serno/QM00001.s1a on /boot (ufs, local)

BUILD on /build (hammer, noatime, local)

15

HAMMER File System Volumes
Management and Pseudo File
Systems Mirroring in DragonFlyBSD

https://www.dragonflybsd.org/docs/handbook/Installation/
https://www.dragonflybsd.org/docs/handbook/Installation/
https://wiki.debian.org/DebianStretch
https://wiki.debian.org/DebianStretch
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Qcow2
https://www.linux-kvm.org/page/Qcow2
https://bsdmag.org/siju_george/
https://bsdmag.org/siju_george/

/build/usr.obj on /usr/obj (null)

/build/var.crash on /var/crash (null)

/build/var.cache on /var/cache (null)

/build/var.spool on /var/spool (null)

/build/var.log on /var/log (null)

/build/var.tmp on /var/tmp (null)

tmpfs on /tmp (tmpfs, local)

procfs on /proc (procfs, local)

Let us look at the hard disks available to us:

dfly1# ls /dev/ad*

/dev/ad0 /dev/ad0s1 /dev/ad0s1a /dev/ad0s1b /dev/ad0s1d /dev/ad0s1e

dfly1# ls /dev/da*

/dev/da0 /dev/da0s0 /dev/da1 /dev/da1s0 /dev/da2 /dev/da2s0
/dev/da3 /dev/da3s0

IDE Disks start with ad, whereas SATA Disks start with da.

dfly1# dmesg | grep ad0

ad0: 102400MB <QEMU HARDDISK 2.5+> at ata0-master WDMA2

dfly1# dmesg | grep da

da0 at ahci0 bus 0 target 0 lun 0

da0: <SATA QEMU HARDDISK 2.5+> Fixed Direct Access SCSI-4 device

da0: Serial Number QM00005

da0: 150.000MB/s transfers

da0: 1024000MB (2097152000 512 byte sectors: 255H 63S/T 130541C)

da1 at ahci0 bus 1 target 0 lun 0

da1: <SATA QEMU HARDDISK 2.5+> Fixed Direct Access SCSI-4 device

da1: Serial Number QM00007

da1: 150.000MB/s transfers

da1: 1024000MB (2097152000 512 byte sectors: 255H 63S/T 130541C)

da2 at ahci0 bus 2 target 0 lun 0

da2: <SATA QEMU HARDDISK 2.5+> Fixed Direct Access SCSI-4 device

da2: Serial Number QM00009

da2: 150.000MB/s transfers

da2: 1024000MB (2097152000 512 byte sectors: 255H 63S/T 130541C)

da3 at ahci0 bus 3 target 0 lun 0

da3: <SATA QEMU HARDDISK 2.5+> Fixed Direct Access SCSI-4 device

da3: Serial Number QM00011

da3: 150.000MB/s transfers

da3: 1024000MB (2097152000 512 byte sectors: 255H 63S/T 130541C)

16

Let us now format the four 1TB Hard Disks with the HAMMER file system. We need to specify a LABEL to
each HAMMER file system during format. Here, we create a HAMMER file system spanning two physical
volumes or disks.

dfly1# newfs_hammer -L POOL1 /dev/da0 /dev/da1

Volume 0 DEVICE /dev/da0 size 0.98TB

Volume 1 DEVICE /dev/da1 size 0.98TB

initialize freemap volume 0

initializing the undo map (1024 MB)

initialize freemap volume 1

HAMMER version 7

2 volumes total size 1.95TB

root-volume: /dev/da0

boot-area-size: 32.00KB

memory-log-size: 256.00KB

undo-buffer-size: 1.00GB

total-pre-allocated: 1.02GB

fsid: e596db85-92ad-11e7-944b-535400e58e52

dfly1# newfs_hammer -L POOL2 /dev/da2

Volume 0 DEVICE /dev/da2 size 0.98TB

initialize freemap volume 0

initializing the undo map (1024 MB)

HAMMER version 7

1 volume total size 0.98TB

root-volume: /dev/da2

boot-area-size: 32.00KB

memory-log-size: 256.00KB

undo-buffer-size: 1.00GB

total-pre-allocated: 1.02GB

fsid: 536b2e56-92ae-11e7-944b-535400e58e52

Mounting the HAMMER File Systems

dfly1# mkdir /POOL1 /POOL2

dfly1# ls /POOL*

/POOL1:

/POOL2:

17

/etc/fstab entries for mounting the filesystems during boot or with mount command

Our POOLs

/dev/da0s0:/dev/da1s0 /POOL1 hammer rw 1 1

/dev/da2s0 /POOL2 hammer rw 1 1

dfly1# mount -a

mount: Device busy

mount: Device busy

dfly1# mount

ROOT on / (hammer, noatime, local)

devfs on /dev (devfs, nosymfollow, local)

/dev/serno/QM00001.s1a on /boot (ufs, local)

BUILD on /build (hammer, noatime, local)

/build/usr.obj on /usr/obj (null)

/build/var.crash on /var/crash (null)

/build/var.cache on /var/cache (null)

/build/var.spool on /var/spool (null)

/build/var.log on /var/log (null)

/build/var.tmp on /var/tmp (null)

tmpfs on /tmp (tmpfs, local)

procfs on /proc (procfs, local)

POOL1 on /POOL1 (hammer, noatime, local)

POOL2 on /POOL2 (hammer, noatime, local)

dfly1# df -h

Filesystem Size Used Avail Capacity Mounted on

ROOT 76.5G 1267M 75.2G 2% /

devfs 1024B 1024B 0B 100% /dev

/dev/serno/QM00001.s1a 1022M 362M 578M 38% /boot

BUILD 19.5G 219M 19.3G 1% /build

/build/usr.obj 19.5G 219M 19.3G 1% /usr/obj

/build/var.crash 19.5G 219M 19.3G 1% /var/crash

/build/var.cache 19.5G 219M 19.3G 1% /var/cache

/build/var.spool 19.5G 219M 19.3G 1% /var/spool

/build/var.log 19.5G 219M 19.3G 1% /var/log

/build/var.tmp 19.5G 219M 19.3G 1% /var/tmp

tmpfs 236M 0B 236M 0% /tmp

procfs 4096B 4096B 0B 100% /proc

POOL1 1999G 203M 1999G 0% /POOL1

POOL2 999G 203M 999G 0% /POOL2

18

Creating and mounting Pseudo File Systems

Initially, we will create Pseudo File Systems such
that :

POOL1 houses Master PFSes

POOL2 houses Slave PFSes for mirroring

By convention, PFSes are created in the "pfs"
directory under the Hammer Mother File system.

Creating Master PFS ISOs in POOL1

dfly1# cd /POOL1/

dfly1# ls

dfly1# mkdir pfs

dfly1# cd pfs

dfly1# hammer pfs-master ISOs

Creating PFS#1 succeeded!

ISOs

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000100008020

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

unique-uuid=0ae191f8-92bb-11e7-944b-535400e58e
52

 label=""

 prune-min=00:00:00

 operating as a MASTER

 snapshots directory defaults to
/var/hammer/<pfs>

Null mounting PFS under the Mother file system

dfly1# cd /POOL1/

dfly1# ls

pfs

dfly1# mkdir ISOs

/etc/fstab entry for master PFS for mounting during
boot, or with mount command.

Our Master PFS mounts

/POOL1/pfs/ISOs /POOL1/ISOs
null rw

Relevant output of "mount" command

dfly1# mount -a

dfly1# mount

POOL1 on /POOL1 (hammer, noatime, local)

POOL2 on /POOL2 (hammer, noatime, local)

/POOL1/pfs/@@-1:00001 on /POOL1/ISOs (null,
local)

Creating Slave PFS ISOs in POOL2

We will use these for mirroring data from Master PFS
ISOs in POOL1.

For PFS mirroring to take place, shared-uuid of
Slave PFS should be same as Master PFS

dfly1# hammer pfs-slave ISOs
shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

Creating PFS#1 succeeded!

ISOs

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000000000001

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

unique-uuid=5ed24fd0-92bc-11e7-944b-535400e58e
52

 label=""

 prune-min=00:00:00

 operating as a SLAVE

 snapshots directory defaults to
/var/hammer/<pfs>

Note : Slave PFSes should not be mounted!

Configure continuous mirroring using
"mirror-stream"

dfly1# hammer mirror-stream /POOL1/ISOs/
/POOL2/pfs/ISOs

Prescan to break up bulk transfer

Prescan 1 chunks, total 0 MBytes (208)

Checking mirroring from POOL1 to POOL2 by
looking at the number of files created

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l && cd
/POOL2/pfs/ISOs/ && ls -l | wc -l

 281

 250

19

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l && cd
/POOL2/pfs/ISOs/ && ls -l | wc -l

 389

 358

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l && cd
/POOL2/pfs/ISOs/ && ls -l | wc -l

 420

 385

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l &&
sleep 5 && cd /POOL2/pfs/ISOs/ && ls -l | wc
-l

 507

 493

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l &&
sleep 5 && cd /POOL2/pfs/ISOs/ && ls -l | wc
-l

 516

 493

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l &&
sleep 5 && cd /POOL2/pfs/ISOs/ && ls -l | wc
-l

 536

 520

Mirroring can be continued even after reboot by
adding the following entry to cron:

@reboot hammer mirror-stream /POOL1/ISOs/
/POOL2/pfs/ISOs

Creating Second Slave Mirror to do a one shot
mirroring using "mirror-copy"

This operation ends once mirroring is complete, and
does not go on continuously like "mirror-stream"

dfly1# cd /POOL2/pfs/

dfly1# ls

ISOs

dfly1# hammer pfs-status /POOL1/ISOs/

/POOL1/ISOs/ PFS#1 {

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000100020e10

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

unique-uuid=0ae191f8-92bb-11e7-944b-535400e58e
52

 label=""

 prune-min=00:00:00

 operating as a MASTER

 snapshots directory defaults to
/var/hammer/<pfs>

}

dfly1# hammer pfs-slave ISOs2
shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

Creating PFS#2 succeeded!

ISOs2

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000000000001

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

unique-uuid=ce39fcdb-92c6-11e7-944b-535400e58e
52

 label=""

 prune-min=00:00:00

 operating as a SLAVE

 snapshots directory defaults to
/var/hammer/<pfs>

dfly1# hammer mirror-copy /POOL1/ISOs/
/POOL2/pfs/ISOs2

Prescan to break up bulk transfer

Prescan 1 chunks, total 0 MBytes (442760)

Mirror-read /POOL1/ISOs/ succeeded

dfly1# cd /POOL2/pfs/ISOs2/ && ls -l | wc -l

 1384

Adding a second Physical Volume to POOL2

 This will format the device and add all of its space
to filesystem.

 A HAMMER file system can use up to 256 volumes.

 dfly1# hammer volume-add /dev/da3s0 /POOL2

/dev/da2s0

/dev/da3s0

dfly1# df -h |grep POOL

POOL1 1999G 203M 1999G
0% /POOL1

20

POOL2 1998G 203M 1998G
0% /POOL2

/POOL1/pfs/@@-1:00001 1999G 203M 1999G
0% /POOL1/ISOs

The new volume will be automatically mounted. So if
you try to mount manually again, you will get the
following message:

 kernel: hammer_vfs_mount: The volumes are
probably mounted

You can make changes permanent by editing
"/etc/fstab" i.e. adding the new device to the existing
"POOL2" entry as shown

/dev/da2s0:/dev/da3s0 /POOL2
hammer rw 1 1

Check if the mirroring process is at work after
boot

dfly1# ps aux | grep mirror

root 886 0.0 0.2 5012 2288 2 I0+
5:53AM 0:00.01 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

root 887 0.0 0.1 21916 1340 2 I1+
5:53AM 0:00.03 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

root 888 0.0 0.1 5528 1248 2 I1+
5:53AM 0:00.00 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

root 897 0.0 0.1 636 504 3 R1+
5:55AM 0:00.01 grep mirror

Simple check to see if Master and slave are in
sync

dfly1# cd /POOL1/ISOs/ && ls -l | wc -l &&
sleep 5 && cd /POOL2/pfs/ISOs/ && ls -l | wc
-l

 2279

 2279

Advanced check to see if Master and Slave are in
sync

dfly1# hammer pfs-status /POOL1/ISOs | grep
sync

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000100029880

dfly1# hammer pfs-status /POOL2/pfs/ISOs |
grep sync

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000100029880

HowTo: Disaster recovery if the Master PFS
/POOL1/pfs/ISOs is destroyed.

Destroying Master PFS /POOL1/pfs/ISOs
mounted on /POOL1/ISOs

dfly1# hammer pfs-destroy /POOL1/pfs/ISOs

You have requested that PFS#1 () be destroyed

This will irrevocably destroy all data on this PFS!!!!!

Do you really want to do this? [y/n] y

This PFS is currently setup as a MASTER!

Are you absolutely sure you want to destroy it? [y/n]
y

Destroying PFS#1 () in 5 4 3 2 1.. starting destruction
pass

pfs-destroy of PFS#1 succeeded!

Ok, we still have the files on the Slave PFS
/POOL2/pfs/ISOs. So, we can take the following
steps for Disaster Recovery:

Upgrade Slave PFS to become a Master PFS.

 Create a new Save PF .

Reconfigure mirroring from New Master PFS to new
Slave PFS .

To start the disaster recovery process, first, we have
to stop all mirroring processes to the Slave.

dfly1# ps aux | grep mirror

root 886 0.0 0.2 5012 2288 2 I0+
5:53AM 0:00.01 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

21

root 887 0.0 0.1 21916 1376 2 I1+
5:53AM 0:00.06 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

root 888 0.0 0.1 5528 1252 2 I1+
5:53AM 0:00.00 hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs

root 925 0.0 0.1 636 500 3 R1+
6:13AM 0:00.00 grep mirror

dfly1# pkill -f "hammer mirror-stream
/POOL1/ISOs/ /POOL2/pfs/ISOs"

dfly1# ps aux | grep mirror

root 928 0.0 0.1 3524 1460 3 S0+
6:14AM 0:00.01 grep mirror

Upgrading Slave PFS to Master

The PFS will be rolled back to the current end
synchronization transaction id

(removing any partial synchronizations), and it will
then become writable. Slave PFSes are not writable
in the normal way.

dfly1# hammer pfs-upgrade /POOL2/pfs/ISOs

pfs-upgrade of PFS#1 () succeeded

Mounting the new master and deleting the fstab
entry for old master

dfly1# cd /POOL2

dfly1# ls

pfs

dfly1# mkdir ISOs

/etc/fstab changes

Our Master PFS mounts

/POOL2/pfs/ISOs /POOL2/ISOs
null rw

Unmounting old master and checking if the new
Master PFS was mounted.

dfly1# umount /POOL1/ISOs

dfly1# mount | grep POOL

POOL1 on /POOL1 (hammer, noatime, local)

POOL2 on /POOL2 (hammer, noatime, local)

/POOL2/pfs/@@-1:00001 on /POOL2/ISOs (null,
local)

Creating a new slave in POOL1 to mirror from
new master /POOL2/ISOs

dfly1# cd /POOL1

dfly1# ls

ISOs pfs

dfly1# cd pfs

dfly1# ls

dfly1# hammer pfs-status /POOL2/ISOs/ | grep
shared-uuid

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

dfly1# hammer pfs-slave ISOs
shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

Creating PFS#2 succeeded!

ISOs

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x0000000000000001

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e
52

unique-uuid=81bdeecc-936c-11e7-b359-535400e58e
52

 label=""

 prune-min=00:00:00

 operating as a SLAVE

 snapshots directory defaults to
/var/hammer/<pfs>

dfly1# hammer mirror-copy /POOL2/ISOs/
/POOL1/pfs/ISOs

Prescan to break up bulk transfer

Prescan 1 chunks, total 0 MBytes (729160)

22

Mirror-read /POOL2/ISOs/ succeeded

dfly1# cd /POOL2/ISOs/ && ls -l | wc -l &&
sleep 5 && cd /POOL1/pfs/ISOs/ && ls -l | wc
-l

 2279

 2279

dfly1# hammer pfs-status /POOL2/ISOs/ | grep
sync

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x00000001000318a0

dfly1# hammer pfs-status /POOL1/pfs/ISOs/ |
grep sync

 sync-beg-tid=0x0000000000000001

 sync-end-tid=0x00000001000318a

Start mirroring from new Master PFS to new
Slave PFS using “mirror-stream”

dfly1# nohup hammer mirror-stream /POOL2/ISOs/
/POOL1/pfs/ISOs &

[1] 1046

dfly1# ps aux | grep mirror

root 1046 0.2 0.2 5012 2304 2 S0
7:14AM 0:00.01 hammer mirror-stream
/POOL2/ISOs/ /POOL1/pfs/ISOs

root 1047 0.0 0.1 21916 1116 2 S1
7:14AM 0:00.01 hammer mirror-stream
/POOL2/ISOs/ /POOL1/pfs/ISOs

root 1048 0.0 0.1 5528 1160 2 S0
7:14AM 0:00.01 hammer mirror-stream
/POOL2/ISOs/ /POOL1/pfs/ISOs

root 1050 0.0 0.1 3480 1428 2 R1+
7:14AM 0:00.00 grep mirror

You can continue the mirroring operation even after a
reboot using the following Cron entry:

@reboot hammer mirror-stream /POOL2/ISOs/
/POOL1/pfs/ISOs

Mirroring from a Master PFS to a Slave PFS then to
another Slave PFS

You can do this to fulfill a scenario where you need
replicated data both on premises as well as in

another continent. The replication between
DragonFly systems can take place securely on the
internet using SSH. To accomplish this, all the PFSes
involved should have the same “shared-uuid”.

Let us create three such PFSes in our system. One
Master in POOL2 (already existing) and two Slaves
in POOL1. As mentioned earlier, the second slave
could be on a DragonFly system in another continent
connected through the Internet using SSH.

dfly1# hammer pfs-status /POOL2/ISOs | grep

shared-uuid  

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e

52  
dfly1# hammer pfs-slave /POOL1/pfs/ISOsSlave1
shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e

52  
Creating PFS#1 succeeded!  
/POOL1/pfs/ISOsSlave1  
 sync-beg-tid=0x0000000000000001  
 sync-end-tid=0x0000000000000001  

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e

52  

unique-uuid=0604dc83-95d2-11e7-bf86-0100000000

00  
 label=""  
 prune-min=00:00:00  
 operating as a SLAVE  
 snapshots directory defaults to

/var/hammer/<pfs>  
dfly1# hammer pfs-slave /POOL1/pfs/ISOsSlave2
shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e

52  
Creating PFS#3 succeeded!  
/POOL1/pfs/ISOsSlave2  
 sync-beg-tid=0x0000000000000001  
 sync-end-tid=0x0000000000000001  

shared-uuid=0ae1913f-92bb-11e7-944b-535400e58e

52  

unique-uuid=0e905044-95d2-11e7-bf86-0100000000

00  
 label=""  
 prune-min=00:00:00  
 operating as a SLAVE  
 snapshots directory defaults to
/var/hammer/<pfs>

23

https://www.openssh.com/
https://www.openssh.com/

Configuring mirroring from POOL2 Master to First
Slave in POOL1

dfly1# nohup hammer mirror-stream /POOL2/ISOs

/POOL1/pfs/ISOsSlave1 &  
[1] 1281  
dfly1# Prescan to break up bulk transfer  
Prescan 1 chunks, total 0 MBytes (729160) 
dfly1# ps aux | grep mirror  
root 1281 0.0 0.2 5012 2292 1 I0
8:18AM 0:00.01 hammer mirror-stream
/POOL2/ISOs /POOL1/pfs/ISOsSlave1  
root 1282 0.0 0.2 21916 1748 1 S0
8:18AM 0:00.05 hammer mirror-stream
/POOL2/ISOs /POOL1/pfs/ISOsSlave1  
root 1283 0.0 0.2 5528 1688 1 S0
8:18AM 0:00.03 hammer mirror-stream
/POOL2/ISOs /POOL1/pfs/ISOsSlave1

Checking Mirror Status

dfly1# cd /POOL2/ISOs && du -s && sync && cd
/POOL1/pfs/ISOsSlave1 && du -s  
1749316 .  
1749316 .  
dfly1# cd /POOL2/ISOs && du -s && sync && cd
/POOL1/pfs/ISOsSlave1 && du -s  
2170047 .  
1749316 .

Configuring Slave to Slave mirroring

Now that we have some data in the slave PFS
/POOL1/pfs/ISOsSlave1, we can start mirroring
from it to the second slave
/POOL1/pfs/ISOsSlave2. This is important because
we will not be able to access a slave PFS until it has
completed the first mirroring operation with it as the
target (its root directory will not exist until then).

dfly1# nohup hammer mirror-stream

/POOL1/pfs/ISOsSlave1/ /POOL1/pfs/ISOsSlave2 & 
[1] 911  
dfly1# Prescan to break up bulk transfer

dfly1# ps aux | grep ISOsSlave2  
root 911 0.0 0.2 5012 2304 1 I0
11:53AM 0:00.00 hammer mirror-stream
/POOL1/pfs/ISOsSlave1/ /POOL1/pfs/ISOsSlave2 
root 912 0.0 1.0 30112 9868 1 D1
11:53AM 0:00.13 hammer mirror-stream
/POOL1/pfs/ISOsSlave1/ /POOL1/pfs/ISOsSlave2 
root 913 0.0 0.1 5528 1096 1 I0
11:53AM 0:00.01 hammer mirror-stream
/POOL1/pfs/ISOsSlave1/ /POOL1/pfs/ISOsSlave2 

root 915 0.0 0.4 5520 3528 1 D1V+
11:54AM 0:00.00 grep ISOsSlave2 (csh)

Checking Mirror Status

dfly1# cd /POOL1/pfs/ISOsSlave1 && du -s &&

sync && cd /POOL1/pfs/ISOsSlave2 && du -s  
1749316 .  
1749316 .

Removing a Volume from a HAMMER File System

Now, we will remove a physical disk from the
HAMMER file system named POOL1. It is not
possible to remove the root-volume as it contains
filesystem metadata such as HAMMER's layer1
blockmap and UNDO/REDO FIFO. This command
may also reblock the filesystem before it attempts to
remove the volume if any data exists on the volume,
and the volume is not empty.

dfly1# hammer info /POOL1  
Volume identification  
 Label POOL1  
 No. Volumes 2  
 HAMMER Volumes

/dev/da0s0:/dev/da1s0  
 Root Volume /dev/da0s0  
 FSID

e596db85-92ad-11e7-944b-535400e58e52  
 HAMMER Version 7  
Big-block information  
 Total 255867  
 Used 2357 (0.92%)  
 Reserved 23 (0.01%)  
 Free 253487 (99.07%)  
Space information  
 No. Inodes 20534  
 Total size 2.0T (2146367963136
bytes)  
 Used 18G (0.92%)  
 Reserved 184M (0.01%)  
 Free 1.9T (99.07%)  
PFS information  
 PFS# Mode Snaps  
 0 MASTER 0 (root PFS)  
 1 SLAVE 0  
 2 SLAVE 0  
 3 SLAVE 0  
dfly1# hammer volume-del /dev/da1s0 /POOL1  
/dev/da0s0  

24

dfly1# hammer volume-list /POOL1  
/dev/da0s0

You can make the changes permanent by editing the
following line in /etc/fstab to:

Our POOLs  
/dev/da0s0 /POOL1 hammer
rw 1 1

Configuring Off Site Mirroring

Let us say a first Master PFS /POOL1/Data1 is on a
Server with IP address 111.111.111.111

And a first Slave PFS /POOL2/Data2 is on a Server
with IP address 222.222.222.222 located on another
floor of the same building as the server with the
Master PFS.

Moreover, a second Slave PFS /POOL3/Data3 is on
a Server with IP address 333.333.333.333 situated in
another continent.

Mirroring from Master 111.111.111.111 to first Slave
222.222.222.222 can be continued even after a
reboot using the following Cron entry in
111.111.111.111

@reboot hammer mirror-stream /POOL1/Data1
root@222.222.222.222:/POOL2/Data2

Mirroring from first Slave 222.222.222.222 to second
Slave 333.333.333.333 can be continued even after
a reboot using the following Cron entry in
222.222.222.222

@reboot hammer mirror-stream /POOL2/Data2
root@333.333.333.333:/POOL3/Data3

Mirroring from a Slave reduces load on the Master
and provides more throughput for the Master for
writes & reads. For this to work, the SSH key based
login for root user should be enabled on the Servers.

Characteristics of Physical Devices that can be
added to a HAMMER master file system

It is possible to add IDE, SAS, SATA, and SCSI
drives to the same pool or HAMMER master file
system as long as the Operating System sees them
as block devices. The devices are concatenated and
remain unused until the previous block device is

filled up. Therefore, the read/write speed will depend
on the specific block device that is in use.

25

About The Author

Siju Oommen George started his career in 2001
as BSD/Linux/Windows/Mac sysadmin at hifx.in
and has been working on related technologies
since. Currently, he is working as CISO at
Broadtech Innovations and also holds the post of
a Technical Writer in hifx.in. More Information is
available at
https://www.linkedin.com/in/sijuoommengeorge/

https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server
https://www.digitalocean.com/community/tutorials/how-to-configure-ssh-key-based-authentication-on-a-freebsd-server
https://www.linkedin.com/in/sijuoommengeorge/
https://www.linkedin.com/in/sijuoommengeorge/

In this workshop you will see real life situations, where debugging skills will save you time, headaches and possibly
find a solution with minimal amount of effort.

Debugging/Troubleshooting is a really useful skill when you are working in maintaining legacy applications, doing
some small incremental changes to an old code base, where the code has been touched by so many hands over the

years and it is becoming really a mess. So, management has decided that the code works as it is and you are not
allowed to change it all over “the right way ™”.

https://bsdmag.org/course/application-debugging-and-troubleshooting-2/	

26

https://bsdmag.org/course/application-debugging-and-troubleshooting-2/
https://bsdmag.org/course/application-debugging-and-troubleshooting-2/

FREEBSD

The NEAT library provides application developers
with a unified and platform independent API for
network communication, regardless of the underlying
network protocol. NEAT’s abstraction layer approach
allows the integration of new network protocols and
transport features, transparently to the user. With
QUIC, RTMFP and WebRTC, several widely
deployed protocols make use of mapping multiple
data streams to a single transport connection.
However, the usage of multiplexing requires
application developers to spend additional effort and
has to be supported by both endpoints. This paper
describes an approach to integrate multiplexing
functionality into the NEAT library, giving application
developers a simple way to use the benefits of
mapping multiple data streams to a single transport
connection without additional coding effort. We
describe our considerations about feature
negotiation, connection handling and data
transmission for multiplexed data streams, an
introduction to the NEAT library, the implementation
details as well as measurement results and future
steps.

Introduction

The internet is dominated by two transport protocols,
TCP and UDP, supported by nearly every operating
system and network. However, within the last years,
several new transport protocols have been
developed to better address the needs of modern
network communication, providing new features and
improved techniques. Many of these protocols are
developed on top of the existing TCP / UDP stack
provided by the operating system, increasing the
compatibility with existing networks. By deploying
them in user space, shorter software update cycles
can be realized. The usage of multiplexing to bundle

several data paths to a single transport connection
has become a key technology for many of these
protocols. Adobe’s Secure Real-Time Media Flow
Protocol (RTMFP) [1], Google’s Quick UDP Internet
Connections (QUIC) [2] and Web Real-Time
Communication Data Channel (WebRTC) [3] are
some examples for widely used protocols and
protocol stacks using multiplexing. Especially for
delay-sensitive applications with a low transmission
rate, multiplexing can be very beneficial. The inherent
transport protocol mechanisms, like flow-control and
congestion-control, improve their effectiveness when
larger quantities of data have to be transmitted. In
case of packet loss, a higher packet rate per flow will
result in faster retransmissions and less
application-to-application delay. Also, sharing a
common congestion window (cwnd) is beneficial for
newly created connections or connections with a low
sending rate. Additionally, the reduced amount of
parallel connections improves the capacity of
servers.

Having the choice between several network protocols
with specific characteristics give application
developers the ability to use the best matching
solution for their use case, but also causes new
difficulties. Every protocol, regardless of whether
accessed via the operating systems socket API or by
a third party library on application level, requires a
different API usage.

The NEAT library [4] addresses this issue by offering
a unified and cross-platform API for network
communication. This includes not only transport
protocols offered by the underlying operating system,
like TCP, UDP or Stream Control Transmission
Protocol (SCTP), but also network protocols which
operate at application level. For example, on

27

Transparent Flow Mapping for NEAT

platforms without native support for the SCTP
protocol, like macOS and NetBSD, NEAT can
seamlessly include an SCTP userland
implementation [5].

Multiplexing has to be implemented at application
level on top of the network stack of the operating
system, requiring additional coding effort. The
developer either has to implement it from scratch or
use an existing library providing an application level
protocol which includes this feature. Especially when
the application has only limited knowledge of its
peer’s multiplexing capabilities, a fallback solution is
required to guarantee a successful communication.
Even if the effort for multiplexing is high and its usage
is not beneficial for all traffic patterns, previous
investigations [6] have shown that the advantages
outweigh the disadvantages for many use-cases.

Our work introduces a multi-purpose multiplexing
solution for the NEAT library, providing application
developers with the benefits of multiplexing without
additional effort. This includes an automatic
negotiation mechanism which ensures a maximum of
compatibility and transparency to the application.
After introducing the NEAT library, its concept of
flows and how they map to transport connections, we
will explain the concept and implementation of
transparently mapping multiple flows to a single
SCTP transport connection without prior knowledge
about the peer’s capabilities. The section is followed
by some of our measurement results, considerations
about alternative transport protocols and an outlook
for our ongoing and future work.

NEAT Library

The NEAT library offers application developers a new
interface for network communication. Instead of using
the traditional socket API, which requires a lot of
protocol and platform specific coding effort, NEAT
provides a unified cross-platform API for network
communication. This includes DNS-name resolution,
connection handling, buffer management and
encryption. NEAT is built on top of the libuv [7]
event-loop library, and, therefore, it offers a
non-blocking and callback-based API. Additionally to
the functionality provided by the NEAT library, the
developer has full access to the libuv library’s

functionality. A detailed insight about the concept and
architecture of NEAT has been given in [8].

Instead of specifying a transport protocol, the
developer specifies his requirements for the
properties provided by the transport service for every
path. These requirements are for example
ordered/unordered delivery, message preservation or
reliability. Taking the preferences and requirements of
the application into account, the NEAT library
chooses the best matching protocol at run-time and
cares for the protocol specific connection handling. In
addition to the widely used TCP and UDP protocols,
NEAT supports the SCTP protocol, the native SCTP
implementations on FreeBSD and Linux, as well as
the SCTP userland implementation on platforms not
having a native support for SCTP, such as macOS
and NetBSD.

NEAT Flows

In NEAT, a communication channel between two
application endpoints is called flow. Flows offer
applications a bi-directional data transmission
interface to the network.

Figure 1. NEAT message and function sequence example
using TCP

28

In order to create a new flow, the client application
provides a DNS-name or IP-address and the
port-number of the remote endpoint and an optional
set of properties. These properties offer a flexible
way of configuring the requirements for the new flow,
allowing a high level transport feature requirements
specification. This includes demanding a reliable data
transport and message preserving boundaries, as
well as a lower level approach by setting the
transport protocol(s) or protocol features, like SCTP’s
multihoming, and encryption. There is a distinction
between required and optional flow properties. For
example, an application may require the SCTP
protocol for a flow and optionally enable SCTP’s
multihoming feature. Flows are assigned to flow
groups where they have a specific priority within the
group, affecting the share of the available bandwidth.
If not specified, all flows are assigned to flow zero.

Based on this information and collected data from
previous connections, available address-protocol
candidates are built, and the NEAT library tries to
establish a connection, based on the flow specific
properties.

If multiple address-protocol candidates are available,
NEAT probes all available candidates by using the
Happy-Eyeballs algorithm [9]. In case of several
successfully established connections, NEAT will
select the best matching connection and close all
spare connections. This selection is based on the
flows properties, taking the transport protocol specific
characteristics and user specified priorities into
account. For example, the TCP connection setup
takes less round-trips than the SCTP connection
setup. If the NEAT library probes TCP and SCTP
candidates, the TCP connection will probably be
established before the SCTP connection. To
overcome this disadvantage for SCTP, NEAT will wait
for an additional period of time before evaluating the
results. When a connection for a candidate has
successfully been established, the NEAT flow
changes its state from connecting to open, and the
application will be notified by means of the
on_connected callback. Figure 1 illustrates the usage
and operation of a NEAT flow using the TCP protocol.

When NEAT uses the stream-based TCP transport
protocol, the flow is reported ready for data
transmission to the application by calling the

on_connected callback, right after the network socket
becomes writable, followed by calling the on_writable
callback. The application may now send and receive
data via the flow’s data transmission functions. Due
to NEAT’s non-blocking-io constraint, applications
can write data to connected flows at any time. The
NEAT library will try to send the data directly to the
network. However, if the socket is not writable or the
amount of data cannot be sent at once, the unsent
data is buffered in a dedicated flow buffer. The data
will be sent as soon as the underlying network socket
becomes writable again. When all data has been
transmitted to the network and no outstanding data is
left in the outgoing flow buffer, NEAT will notify the
application by calling the on_all_written callback. This
callback allows applications to saturate a network
connection without bloating the outgoing flow buffer.

When the flow’s network socket becomes readable,
the NEAT layer notifies the application by triggering
the on_readable callback. The application can now
read data from the flow by using the neat_read
function and by providing a read buffer with a given
size. If the amount of received data exceeds the
provided buffer size, the on_readable callback will be
triggered again until all received data has been
handed over to the application. Internally, the
application reads directly from the flow’s underlying
network socket without additional buffering by NEAT.
Applications may close a NEAT flow at any time by
calling neat_close or initiate a graceful connection
shutdown by using neat_shutdown. The library will
transmit all outstanding data to the remote peer,
handle the connection closing procedure and trigger
the on_close callback when all operations have been
finished. After the on_close callback has been
triggered, no flow specific callbacks will be triggered
by the library and subsequent calls to read- or
write-functions on the flow will result in an error.

29

Figure 2. NEAT message and function sequence example
using SCTP

The usage of message oriented protocols like SCTP
or UDP within NEAT differs internally from
stream-based protocols like TCP, but operates
transparently to the application. Figure 2 illustrates
the usage and operation of a NEAT flow using the
SCTP protocol. Once a SCTP based transport
connection is established, NEAT will evaluate SCTP
specific connection parameters and extensions
before announcing the flow’s open state to the
application. The parameters and supported
extensions are important for the further usage of the
flow. They include the amount of available SCTP
streams and support of explicit end of record (EOR)
marking, which allows the transmission of arbitrary
large user messages by the application. Once all
SCTP notifications have been read, NEAT will trigger
the on_connected callback to notify the application
that the flow is ready for data transmission. When the
application writes data to the flow, it will be sent to
the network or buffered within a flow specific send
buffer, similar to TCP, as explained before. In contrast
to stream based protocols, NEAT buffers unsent data
in a message preserving way by using a message
queue. Every user message is buffered in a distinct
entry within the queue. When incoming data is

available at the network socket, NEAT will read the
incoming message into the flow specific receive
buffer. If the message is a fragment of a larger user
message, NEAT receives and reassembles all
fragments before announcing the complete message
to the application via the on_readable callback. NEAT
will only buffer a single user message, no further
messages are read from the socket until the buffered
message has been read by the application, in order
to avoid bloating the incoming buffer on the receiver
side. Closing SCTP based flows is similar to the
procedure of flows using TCP. NEAT, like SCTP, does
not support TCP’s half-closed feature, in order to
keep the promise of a unified API.

Transparent Flow mapping

Transparent flow mapping hooks into NEAT’s
abstraction layer approach by multiplexing multiple
NEAT flows to a single transport connection without
additional actions of the application. If both endpoints
support multiplexing and the applications have
enabled the support for transparent mapping in their
settings, NEAT will automatically use the transparent
mapping. As shown in Figure 3, the flows still show
up as they would when using a dedicated transport
connection, providing the same API and functionality.

Figure 3. NEAT flows - comparison of 1:1 and transparent
flow mapping

Requirements and Negotiation

Before the transparent mapping can be used, both
peers have to fulfill some requirements and negotiate
the support of the feature. NEAT requires some
SCTP specific extensions to be supported by the

30

network stacks on both sides, including the support
for Stream Reconfiguration [10]. The user may
require a flow to preserve data message boundaries.
In this case NEAT requires the support for the SCTP
User Message Interleaving (I-DATA) [11] extension,
in order to prevent a sender side head-of-line
blocking. If the local requirements are fulfilled, NEAT
has to negotiate the multiplexing capabilities with its
peer. This is achieved by using SCTP’s adaptation
layer indication. The NEAT specific adaptation layer
indication value is exchanged within SCTP’s
connection setup procedure and provided as an
SCTP notification on both sides, once the connection
has been established. If all requirements are met, the
transport connection is marked as usable for
transparent flow mapping. Otherwise the NEAT
library continues operating in regular mode and maps
every flow to a separate transport connection. This
approach has the advantage of being fully
interoperable with peers not using the NEAT library.

Flow creation

Creating a new flow triggers the NEAT library to
search for an established SCTP association with a
matching tuple of destination address, port,
properties and support for transparent flow mapping.
Only flows belonging to the same flow group are
taken into this survey, allowing the application to
prevent multistreaming for a flow by assigning it to an
empty flow group.

Figure 4. Transparently mapped flow creation procedure

If NEAT discovers a matching SCTP association, the
new flow is mapped to it instantly and all ongoing
connection establishment procedures for other
address-protocol-candidates are stopped. The
mapping is realized by assigning the new flow to a
dedicated SCTP stream of the established

association. The amount of flows per transport
connection is limited by the number of available
incoming and outgoing SCTP streams per
association. SCTP itself supports up to 65535
streams per association. As shown in Figure 4, the
NEAT library will notify the application instantly by
triggering the on_connected and on_writable
callbacks. If multiple SCTP associations are available
for a transparent mapping, NEAT takes the first one
to bundle as many flows as possible.

The first flow, for which the SCTP association has
initially been created, will always use stream id zero.
All additional flows are assigned to unused stream
ids. To avoid a glare situation, occurring when both
endpoints map new flows simultaneously, the peer
which initiated the transport connection will use even
stream numbers whereas the remote side will map its
flows to odd stream numbers. Both sides maintain a
status map of the assigned stream numbers.

Due to the lack of a connection setup procedure on
the network, the creation of a new flow is signalized
to the remote side by sending the first data message.
Transparently mapped flows are instantly ready for
data transmission without additional round-trips and,
superior to the TCP fast open mechanism [12], the
amount of outgoing data is not limited. When
receiving an SCTP message on a previously unused
stream id, the receiver creates a new incoming flow
and triggers the same callbacks as if a new
connection using a native transport connection had
been opened. Using an implicit flow setup restricts
the usage of transparently mapped flows for use
cases where the server starts transmitting data to the
client without receiving a request, for example a
daytime-server. A possible approach to overcome this
limitation is the explicit connection setup by sending
a control message with a specific Payload Protocol
Identifier (PPID) to trigger the incoming flow
procedure on the receiver side.

Data transmission

One of the most challenging parts of transparently
mapped flows is the handling of incoming and
outgoing data. Sharing a network socket between
multiple flows requires the NEAT library to cope with
scheduling and buffer management techniques.
When a shared socket becomes writable, NEAT

31

schedules over all assigned flows in a round-robin
manner. Beginning with the first flow, the library
transmits scheduled data from the outgoing flow
buffer before triggering the flow’s on_writable
callback. When the flow neither has outstanding data
in the buffer nor received new data from the
application, the library will continue with the same
procedure for the next flow. As mentioned in the
negotiation section, applications may send arbitrary
large messages and require message boundary
preservation. To transmit user messages larger than
the maximum segment size (MSS), SCTP supports
fragmentation and reassembly. The sender
fragments the user message in multiple DATA chunks
for transmission which are reassembled by the
receiver. If the sender starts transmitting a large user
message, consisting of several data chunks,
transmissions on all other streams are blocked until
all fragments of the user message have been
transmitted. To overcome this sender side
head-of-line-blocking when transmitting large user
messages, NEAT uses the SCTP I-DATA extension.
I-DATA solves the sender side head-of-line-blocking
issue by supporting message interleaving [11] and is
also used in the WebRTC protocol for the same
purpose [3]. Another major change for multistreaming
affects the receiver side. Whereas a one-to-one style
mapped flow only buffers a single incoming user
message, a socket used for multistreaming reads
messages from the underlying SCTP socket until all
assigned flows have at least one user message in
their receive buffer. If the sender transmits data on
two or more flows and the receiver does not read
data from one particular flow, NEAT buffers this data
to prevent other multistreamed flows from being
blocked by this flow. Limiting the maximum amount of
buffered data on the receiver side would either result
in dropping data for the particular flow or in blocking
all incoming messages for every transparently
mapped flow on the affected SCTP socket, both
cases are undesirable. A possible approach to
overcome this limitation would be application based
flow control per transparently mapped flow. Here the
receiver signalizes the increasing flow buffer by
sending a specific control message to the sender to
prevent further transmissions on this particular SCTP
stream.

Teardown

Analogous to the creation of a transparently mapped
flow, NEAT cannot make use of SCTP’s native
closing procedure for teardown. Instead, NEAT uses
the SCTP Stream Reconfiguration extension for the
closing procedure. When the application calls the
neat_shutdown function for a flow to initiate a
graceful shutdown, all outstanding data will be sent
and the application may still receive data from its
peer, shown in Figure 5. Internally, the flow is marked
as closing by the library and once the outgoing flow
buffer has been drained, NEAT will trigger the SCTP
stream reset procedure for the outgoing stream. After
calling the neat_shutdown method, the application
cannot write any additional data to the flow, the
on_writable event will not be triggered any more and
calling neat_write will cause an error.

Figure 5. Transparently mapped flow shutdown
procedure

Upon receiving an SCTP Stream Request for an
incoming stream, NEAT indicates the event by a
return value of null when the application calls the
neat_read function. The flow will not accept new data
via the neat_write function for transmission. When
the remote endpoint also responds with a Stream
Reset Request for the incoming stream, the closing
procedure of the flow has finished and all resources
may be freed. This behavior reflects the connection
teardown process for unmapped flows. An application
may also use the neat_close function. In contrast to
neat_shutdown the closing procedure resets the
outgoing as well as the incoming SCTP streams.
Once the closing procedure for a flow has been
finished, the SCTP stream id may be reassigned to a
new multistreamed flow. Both endpoints maintain an
SCTP association assigned status map for every
stream id.

Measurements

32

Figure 6. NEAT flow mapping - 1:1 mapping and
transparent flow mapping

To examine the advantages and disadvantages of a
transparent mapping, we used a client-router-server
scenario. All machines are physical nodes running
FreeBSD 12 with a GENERIC-NODEBUG kernel. As
shown in Figure 6, the NEAT Client and the NEAT
Server are connected via the router which emulates
various network conditions between the two peers by
using FreeBSD’s builtin dummynet [13] network
emulation tool. The router emulates different network
conditions by adding delay and packet loss to the
path between the server and the client. To achieve
some randomness during the measurements, the
client transmits a low amount of random UDP
messages to the server. Our benchmarking tool,
using the NEAT library, is designed to measure a
variety of parameters, including the
application-to-application-delay between both
applications for every flow.

The scenario compares the impact of packet loss and
link delay for mapped and unmapped streams
concerning application-to-application delay. The
NEAT Client opens two SCTP based flows to the
NEAT Server and sends small messages between
100-200 bytes periodically with a low rate on each
flow to simulate an application using multiple flows
for data transmission. This behavior is typical for
many use-cases like a browser scheduling requests
over multiple connections or control systems
reporting data to a central instance.

Figure 7. Measurement results comparison of mapped
and unmapped flows

We varied the link delay, starting with 10 milliseconds
in steps of 10 milliseconds to a delay of 50
milliseconds and used loss rates of zero, one and
two percent on the link. Every measurement ran for
60 seconds and was repeated ten times. As shown in
Figure 7, the results show a slightly higher
application delay for multiplexed flows on
connections without loss, resulting from internal data
handling within the NEAT library. In case of packet
loss, the transparently mapped flows show a lower
delay compared to regular flows. This is a result of
better utilizing the transport protocols loss detection
algorithms.

Our results show a significant
application-to-application delay improvement for
transparently mapped flows in comparison to regular
flows, fulfilling our expectations.

Alternative transport protocol considerations

As mentioned in the previous sections, transparent
flow mapping is not tied to the SCTP protocol. In
addition to the SCTP protocol, Google’s QUIC
protocol also covers many requirements for the
transparent mapping of multiple flows and, since it is
layered on top of UDP, it can seamlessly be
integrated into NEAT’s abstraction layer approach.
Mainly developed to replace TCP as the underlying
transport protocol for HTTP2, QUIC is not tied to this
use-case and may be used by any other application
for generic purposes. Similar to SCTP, QUIC uses

33

multiplexed streams and does not suffer from
head-of-line blocking. In contrast to SCTP, QUIC
supports zero-RTT connection setup and uses
encryption by default. Due to QUIC’s early stage of
development and the lack of a specification, QUIC is
a candidate for future work. Another candidate is
Adobe’s RTMFP protocol which is also UDP based
and multiplexes multiple flows over a single transport
connection. Although specified in by an RFC [1], no
official RTMFP library is available and the
development has been discontinued.

Conclusion and outlook

While multiplexing of several data streams on a
single transport connection has become a feature
more and more popular due to its usage within new
protocols, it still requires additional effort for
application developers. Especially when the
application has no knowledge about its peer. Even if
the developer uses a userland implementation of a
transport protocol that supports multiplexing, it still
remains an additional coding effort, especially when
a fallback solution is desired. With NEAT’s approach
of creating an abstraction layer on top of the different
network protocol APIs to give developers a unified
way of accessing transport function. We were able to
seamlessly integrate a transparent flow mapping
feature which gives application developers the
benefit of multiplexing without additional coding
effort and still being fully compatible. We introduced
our approach for multiplexing using SCTP, the
integration in the NEAT library and the techniques for
feature negotiation, flow handling and data
transmission. Our measurements show advantages
of transparently mapped flows over regular flows in
usual use-cases. In our ongoing work, we are
focusing on improving the buffer management and
scheduling of concurrent multiplexed flows.
Additionally, we will add support for WebRTC
Data-Channels [3] to the NEAT library. This allows
developers to use NEAT not only for client-server
communication but also for building peer-to-peer
applications.

Acknowledgments

This work has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No. 644334

34

(NEAT). The views expressed are solely those of the
authors.

[1] M. Thornburgh, “Adobe’s Secure Real-Time
Media Flow Protocol.” Internet Engineering Task
Force; RFC 7016 (Informational); IETF, Nov-2013.

[2] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk,
“QUIC: A udp-based secure and reliable transport for
http/2,” IETF Secretariat; Working Draft,
Internet-Draft
draft-hamilton-early-deployment-quic-00, July 2016.

[3] R. Jesup, S. Loreto, and M. Tuexen, “WebRTC
data channels,” IETF Secretariat; Working Draft,
Internet-Draft draft-ietf-rtcweb-data-channel-13,
January 2015.

[4] NEAT Project, “A New, Evolutive API and
Transport-Layer Architecture for the Internet,”
Available at https://www.neat-project.org/, 2017.

[5] “usrsctp - a portable SCTP userland stack,”
Available at https://github.com/sctplab/usrsctp, 2017.

[6] M. Welzl, F. Niederbacher, and S. Gjessing,
“Beneficial Transparent Deployment of SCTP: the
Missing Pieces,” IEEE Globecom 2011 proceedings,
2011.

[7] “libuv — Cross-platform Asynchronous I/O.”
[Online]. Available: https://libuv.org/.

[8] N. Khademi et al., “NEAT: A Platform- and
Protocol-Independent Internet Transport API,” IEEE
Communications Magazine, 2017.

[9] D. Wing and A. Yourtchenko, “Happy Eyeballs:
Success with Dual-Stack Hosts.” Internet
Engineering Task Force; RFC 6555 (Proposed
Standard); IETF, Apr-2012.

[10] R. Stewart, M. Tuexen, and P. Lei, “Stream
Control Transmission Protocol (SCTP) Stream
Reconfiguration.” Internet Engineering Task Force;
RFC 6525 (Proposed Standard); IETF, Feb-2012.

[11] R. Stewart, M. Tuexen, S. Loreto, and R.
Seggelmann, “Stream schedulers and user message
interleaving for the stream control transmission
protocol,” IETF Secretariat; Working Draft,
Internet-Draft draft-ietf-tsvwg-sctp-ndata-08, October
2016.

[12] Y. Cheng, J. Chu, S. Radhakrishnan, and A.
Jain, “TCP Fast Open.” Internet Engineering Task
Force; RFC 7413 (Experimental); IETF, Dec-2014.

[13] “The dummynet project,” Available at
http://info.iet.unipi.it/~luigi/dummynet/, 2017.

Disclaimer

Permission to make digital or hard copies of part or
all of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page.

Copyrights for components of this work owned by
others than IFIP must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

16th International IFIP TC6 Networking Conference,
Networking 2017, Stockholm, June 12-15, 2017 
ISBN 978-3-901882-94-4 © 2017 IFIP

35

About The Author

Felix Weinrank is a computer scientist from
Germany. He is currently a Ph.D student in the
Department of Electrical Engineering and
Computer Science at Münster University of Applied
Sciences. His research interests include the SCTP
transport protocol, low-latency Internet
communication and network emulation.

https://libuv.org/
https://libuv.org/

36

1st ed., XVIII, 320 p. 239 illus., 210 illus. in
color.

A product of Apress

Printed book

Softcover
▶ 36,99 € | £27.99 | $39.99
▶ *39,58 € (D) | 40,69 € (A) | CHF 41.00

eBook

Available from your library or
▶ springer.com/shop

MyCopy

Printed eBook for just
▶ € | $ 24.99
▶ springer.com/mycopy

Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at:
customerservice@springer.com. ▶ For outside the Americas call +49 (0) 6221-345-4301 ▶ or email us at:
customerservice@springer.com.

The first € price and the £ and $ price are net prices, subject to local VAT. Prices indicated with * include VAT for books; the €(D) includes 7% for
Germany, the €(A) includes 10% for Austria. Prices indicated with ** include VAT for electronic products; 19% for Germany, 20% for Austria. All prices
exclusive of carriage charges. Prices and other details are subject to change without notice. All errors and omissions excepted.

Standard Apress Distribution

D. Vohra

Docker Management Design Patterns
Swarm Mode on Amazon Web Services

▶ Master Docker management design patterns and how to use them to
develop applications

▶ Utilize Swarm Mode features to manage a cluster of containers
distributed across multiple machines

▶ Learn to use Docker for AWS managed services

Master every aspect of orchestrating/managing Docker including creating a Swarm,
creating services, using mounts, scheduling, scaling, resource management, rolling
updates, load balancing, high availability, logging and monitoring, using multiple zones,
and networking. This book also discusses the managed services for Docker Swarm: Docker
for AWS and Docker Cloud Swarm mode.

Docker Management Design Patterns explains how to use Docker Swarm mode with Docker
Engine to create a distributed Docker container cluster and how to scale a cluster of
containers, schedule containers on specific nodes, and mount a volume.

You will learn to provision a Swarm on production-ready AWS EC2 nodes, and to link
Docker Cloud to Docker for AWS to provision a new Swarm or connect to an existing
Swarm. Finally, you will learn to deploy a Docker Stack on Docker Swarm with Docker
Compose.

You will:

• Appl
y Docker management design patterns

• Use Docker Swarm mode and other new features introduced in Docker 1.12 and 1.13

• Create and scale a Docker service

• Use mounts including volumes

• Configure scheduling, load balancing, high availability, logging and monitoring, rolling

updates, resource management, and networking

• Use Docker for AWS managed services including a multi-zone Swarm

• Build Docker Cloud managed services in Swarm mode

UNIX

Following on from the discussion of some of the
types of queuing mechanisms, available on Unix, it
may be beneficial to examine the design of a queuing
system, loosely modeled on that used by IBM, in its
WebSphere MQ Series.

The MQ paradigm is based on the concept of a
Queue Manager, which controls a set of local
queues, which are grouped into Channels, which
latter are of the ‘send’ or ‘receive’ variety. These
queues are disk based files, each located under a
directory which bears the name of the queue.
Normally, there will be several inbound and
outbound queues combined into a receiving or
sending Channel, respectively. Each Channel has
associated with it an IP address of the remote
machine. In operation, each queue manager
performs as a simple TCP/IP server, and listens for
connections on its separate port, whose number is
around 1414. Connections arrive from other
machines and, in the traditional manner, the server
forks to service each connection, transferring
double-byte data from the socket to the disk.
Although this, in essence, appears to be a classic
client-server system, the connections are, actually,
from server to server, or queue manager to queue
manager. Most of the queue manager’s time is spent
listening for incoming connections, and polling its
local outgoing queue directory, waiting for some
local application to place data on a queue.

When this happens, the local queue manager forks
and makes a connection to the remote machine,
whose IP address and port number are available
from the channel definition. While the child process
is transferring data, the parent continues to check
the directory and listen to port 1414.

It may be instructive to follow this sequence through.

• 	 Machines A and B both listen on port 1414.

• 	 Machine A’s queue manager is informed that
an application has placed a message on the ‘send’
queue.

• 	 The queue manager forks a child process,
which makes a socket connection to machine B, on
port 1414.

• 	 Machine B’s queue manager accepts the
connection, and forks a child, to handle the
connection. The child uses port 32768.

• 	 Data is transferred, from A to B.

Note that there is no conflict in terms of the port
number since both managers fork child processes,
which use dup’d ports.

Unix Shared Memory-Based Queue Functions

There are only four system calls associated with
memory-based queuing functions:

msgget() – which creates or identifies queues, but
does not get messages.

msgsend() – which sends a message to a queue.

msgrecv() – which fetches messages from a queue.

msgctl() – which either interrogates or deletes the
queue.

We create a queue like this:

int qd, qe;

 if((qd = msgget(IPC_PRIVATE,
IPC_CREAT|0777)) == -1){

 perror(“msgget”);

 }

37

Advanced Unix Queuing Techniques

The IPC_PRIVATE parameter has the same
significance as it creates shared memory segments,
and can be any unique identifier contained in an int –
or ‘key_t’ since it is defined in the header. The
IPC_CREATE | 777 flags are identical to those used
with the open() system call for creating files, and
have the same meaning. The return value, qd, looks
and works like a file descriptor. It is the queue
identifier which we will use when accessing this
queue. Now that we have an identifier, we can read
from and write to the queue but first, we need to
define a queue element structure.

As with other Unix queues, this structure has to look
like this:

struct {

 long typ;

 char txt[length];

} msg;

Meaning that, when it is lying about in the memory,
or in flight down a TCP/IP connection, it looks like a
packet with a four-byte header and a ‘length’ byte
payload.

More importantly, the queue functions expect to read
a piece of contiguous memory, which conforms to
this definition.

The significance of this is that, we cannot
dynamically allocate the memory for the ‘txt’
member since this would make our message look
like an int, followed by a pointer. At best, we would
enqueue or dequeue 8 bytes and at worst, we would
get a segmentation error.

As usual, there is a work-around for this apparent
limitation.

Basically, we don’t define a structure at all, but
concentrate on the packet concept.

If we declare a pointer to unsigned char,

unsigned char *xsg;

then, we can send any type of data, and of any
length. The only thing we need to remember is
always to allocate 4 bytes more memory than we
need, and to commence writing our four bytes data

past the starting address of our allocated memory.
By way of an example, let us assume that we wish to
enqueue an array of double-byte characters, which
look like int’s on a Solaris system and shorts on
most other Unix systems.

wchar_t wchars[255];

For convenience, we would rather declare a dummy
pointer to an int so that we can fool the system into
letting us add our ‘type’ member to the first 4 bytes
of our unsigned char array. The ‘type’ member
contains an arbitrary, user-defined integer, which we
can use later to identify our message in the queue.

Int *xint;

Now, we can send the array to a queue. However,
we first need to allocate memory:

 if((xsg = (char *)malloc(sizeof(wchars)+4))
== NULL){

 printf(“Memory allocation error\n”);

 }

Take note of how we ask for an extra 4 bytes to cater
for our ‘type’ member.

Next, we set our pointer to the first location in the
array:

 xint = (int *)&xsg[0];

Next, we can insert our integer:

 xint[0] = 9;

and load the newly-acquired memory with our
wide-character data:

memcpy((char *)&xsg[4], (char
*)wchars), sizeof(wchars));

Finally, we send it to the message queue:

 if(msgsnd(qd, (void *)xsg, sizeof(numbers),
0) == -1){

 perror(“mq_send”);

 }

38

The syntax for msgsnd() is fairly obvious, and follows
the pattern of write() to a file, or that of send() to a
socket. The first argument is our queue descriptor,
the second is a pointer to the data, and the third is
its length. Finally, we have the flag which defines
what to do with the message if the queue either
contains the maximum number of bytes, or the
maximum number of messages:

• 	 If the flag is IPC_NOWAIT, the call returns
immediately and the message is not sent.

• 	 If the flag is zero, msgsnd() will hang until the
queue is no longer full, or the queue gets deleted, or
the current process catches an interrupt.

For our purposes, a flag of zero makes for more
reliable delivery. So, that is what we use.

Now for the receiving function, msgrcv().

The syntax is, as with msgsnd(), similar to the read()
and recv() system calls.

Given a receive buffer definition similar to

unsigned char data[8192];

and type and flag parameters defined as

Int, typ, flg;

We can see how familiar the code is:

 If(msgrcv(qd, (void *)&data, sizeof(data),
typ, flg)) == -1){

 perror(“msgrcv”);

 }

The msgctl() system call returns information about
the queue.

The syntax is:

msgctl(queue, flag, structure_pointer);

where, the flag is either IPC_STAT, for retrieving data,
or IPC_SET, for altering queue characteristics.

In practical terms, the only items we can alter are the
permissions on the queue, unless we run as root,
when we can change the maximum queue size.

Accordingly, information retrieval is this function’s
greatest value. The structure_pointer mentioned
above points to the msqid_ds structure, defined in
sys/msg.h as:

struct msqid_ds {

 struct ipc_perm msg_perm; /*
operation permission struct */

 struct msg *msg_first;
/* ptr to first message on q */

 struct msg *msg_last;
/* ptr to last message on q */

 msglen_t msg_cbytes;
/* current # bytes on q */

 msgqnum_t msg_qnum; /*
of messages on q */

 msglen_t msg_qbytes;
/* max # of bytes on q */

 pid_t msg_lspid;
/* pid of last msgsnd */

 pid_t msg_lrpid;
/* pid of last msgrcv */

 time_t msg_stime;
/* last msgsnd time */

 time_t msg_rtime;
/* last msgrcv time */

 time_t msg_ctime;
/* last change time */

 short msg_cv;
/* not used */

 short msg_qnum_cv;
/* not used */

};

whose members are filled in by the system call.

Putting it all together gives us a typical call as:

 struct msqid_ds atr;

 if(msgctl(qd, IPC_STAT, &atr) == -1){

 perror(“msgctl STAT server”);

 }

from which, we can get useful information, such as:

printf(“Current queue length: %d\n”,
atr.msg_qnum);

Implementing Some MQ Functionality

The MQ model is very efficient in terms of use of
machine resources. The functionality is spread over
many processes, and is a good example of a

39

Multi-Dimensional Architecture. However, since MQ
needs to use persistent queues, it throws away all of
its performance advantages, by doing very heavy
disk I/O. This is largely irrelevant for short messages
but, if it is used for performing large data extracts,
from large databases, the delays become significant.
For the sake of this exercise, we will assume that,
the speed of operation is of paramount importance.
However, the normal reliability of delivery is
adequate and a machine crash is tolerable.
Accordingly, we will design and partially code a
simple queue manager which implements most of
the functionality of the MQ manager, but uses kernel
queues. The implementation of any refinements is
left, as they say, to the reader.

The Queue Manager

First, let us remind ourselves of the two prime
functions of our queue manager:

• 	 Listen for incoming connections

• 	 Check local queues for data needing
transmission to remote sites

There are two possible solutions to this apparent
dichotomy

• 	 Run two processes, one possibly being the
child of the other.

• 	 Run one process, within which we have two
threads of execution.

Since MQ series was born at a time (and on a
machine) where pthreads weren’t even a glimmer on
the horizon, IBM uses multiple processes.

From a performance perspective, this would
represent the best practice for us, too. But first, let
us specify, in detail, what happens.

If our server is sitting there, with its ear glued to port
1415, then how is it going to transmit data through
that port? The answer is that it isn’t.

What happens is that, whatever checks the local
queues and decides to send the messages to the far
corners of the earth, will make a connection to port
1414, in the same way as the server on the far side

of the moon, with a message for us. This means that
our server only has to differentiate between an
inbound and an outbound connection and take the
appropriate action. Once the connection is
established, and the server has forked a child, the
child will have its brand-new socket, a port number,
and can send or receive data at will. The sequence
of events in our server is now looks like this:

• 	 Listen to port 1414

• 	 If the incoming connection is local, it is
outbound.

• 	 Fork process for reading messages from
queues

• 	 Inside this process, send outbound queue
data to remote address

• 	 Child terminates

• 	 If the incoming connection is remote, it is
inbound data.

• 	 Fork process for enqueuing messages

• 	 Inside this process, enqueue incoming
messages

• 	 Child terminates.

Now, we nearly have a complete picture. However,
we are pretending that we only have one queue
manager and a pair of queues at each end. In reality,
we could have many, going to many destinations.
Also, following the MQ policy of ‘guaranteed
delivery’, we would need to re-send any messages
which failed on the first attempt.

What about the User Application?

The whole purpose of a queuing system is to make
data flow from one place to another. So, how does
the user application fit in? In an MQ environment, the
application is always written such that it;

• 	 Calls CONNECT to connect to a queue
manager.

• 	 Makes a request to GET inbound messages or
PUT outbound messages

• 	 Does its thing.

• 	 Quits.

40

Note that, given the above scenario, it is evident that
the application doesn’t need to directly execute the
queuing system calls. The CONNECT() function,
from the MQ library, hides the mechanics of the
TCP/IP connection to the queue manager, and the
GET() or PUT() function calls merely pass the data
down the socket connection, for the queue manager
to enqueue or dequeue.

The Channel Manager

Everything seems to be automatic. Do we need a
Channel Manager?

It is the responsibility of the application to remove
inbound messages, and the responsibility of the
queue manager to forward outbound messages. This
means that, for inbound messages:

• 	 Server handles connection from remote site.

• 	 Server enqueues inbound message.

• 	 Server waits for the application to connect
with a GET request.

For outbound messages:

• 	 Server handles connection from application,
with a PUT request.

• 	 Server enqueues message.

• 	 Server forwards the message to the remote
site.

It may be seen that, inbound messages are event
driven and need no external agent. Outbound
messages are enqueued, and then forwarded
immediately by the child process which enqueued
them. Accordingly, unless there is a communications
failure, we may assume that the queue manager
server will itself, immediately, empty the outbound
queue. It is this latter condition which necessitates
the use of a channel manager.

Each channel manager will be associated with a
queue manager, and both will be handling traffic to
and from a given destination, (the ‘channel’). When
the channel manager sees a message count of some
number more than zero, it connects to its
appropriate queue manager, on the appropriate port

number, to tell it that the queue needs servicing, and
the IP address where the data should be sent.

Its operation would follow this pattern:

• 	 Check the length of the outbound queue.

• 	 If it is greater than zero, we need to send a
message.

• 	 Connect to port 1414.

• 	 Give the queue manager server details of
which queue, and where to send it.

• 	 Go to sleep for a predetermined period.

The Protocol

We will also need to design a primitive protocol,
contained within the message header, so that the
server can differentiate between an inbound and an
outbound connection and for safety, can differentiate
them from a spurious connection. Within the
protocol, there has to be a slot for identifying the
queue and the destination, if appropriate.

While keeping within the constraints of the basic
queue structure, we will add some fields to it to
make it better suited for our purpose.

We need the following information:

• 	 Type of operation – ‘GET’ or ‘PUT’, symbolized
by ‘1’ or ‘0’, as 1 character.

• 	 Name of queue – 23 characters, although MQ
permits 40.

• 	 Length of following message + length of an int.

• 	 Type – an integer, as defined in msg.h

• 	 Data

Which gives us a 32-byte header, which fits on either
a 4-byte or 8-byte boundary, such that TCP/IP will
not perform any padding.

We can deduce from all of the aforegoing that,
multi-threading is not going to be of any use to us.
We will have two families of processes, associated
with the queue manager and channel manger, and it

41

would be inefficient to attempt to run them as two
threads. Readers who disagree are invited to code a
threaded version and compare response times.

Server Code

Since this is a test program, we will begin it by
creating one outbound and one inbound queue.
Ordinarily, these will have been created earlier, and
their descriptors saved, for passing to the queue
manager. We will need the following definitions:

struct xqdata{

 long typ; /* 0=1st on queue,
n=1st of type n, -n=1st of <n */

 char msg[8192];

};

struct xqdata qdata; /* data
from msg queues */

struct xmsg {

 char mode; /* 1=GET 0=PUT */

 char qname[23];

 int length;

 struct xqdata mesg;

};

struct xmsg *msg;

int qd, qe; /* outbound, inbound
queues */

int *xint;

char *xsg;

main()

{

/* and we can now create our queues: */

/* outbound queue */

 if((qd = msgget(IPC_PRIVATE,
IPC_CREAT|0777)) == -1){

 perror(“msgget”);

 }

/* inbound queue */

 if((qe = msgget(IPC_PRIVATE,
IPC_CREAT|0777)) == -1){

 perror(“msgget”);

 }

/* now the TCP/IP furniture */

 memset(&sa, 0, sizeof(struct
sockaddr_in));

 if(gethostname(hname, sizeof(hname)) !=
0){

 printf(“Can’t determine our own host
name. Quitting\n”);

 quit(-1);

 }

 if((hp = gethostbyname(hname)) == NULL){

 return(-1);

 }

 if((svc = getservbyname(“ingreslock”,
“tcp”)) == NULL){

 printf(“%s doesn’t exist\n”);

 quit(-1);

 } else {

 portnum = svc->s_port;

 }

 printf(“Server on machine %s, listening to
port %d\n”, hname, portnum);

 sa.sin_family = hp->h_addrtype;

 sa.sin_port = htons(portnum);

 if((s = socket(AF_INET, SOCK_STREAM, 0)) <
0){

 quit(-1);

 }

if(bind(s, (struct sockaddr *)&sa,
sizeof(struct sockaddr_in)) < 0){

 printf(“Can’t bind to port %d\n”,
portnum);

 perror(“bind”);

 close(s);

 quit(-1);

 }

 listen(s, 20);

 while(1){

 inlength = sizeof(sa);

 if((xs = accept(s, (struct sockaddr
*)&sa, &inlength)) < 0){

 break;

 } else {

42

 p = (char
*)inet_ntoa(sa.sin_addr);

 printf(“\nIncoming connection from
>%s<\n”, p);

 fflush(stdout);

 switch((ppid = fork())){
/* make our child process */

 case -1:

 perror(“fork”);

 exit(-1);

 break;

 case 0:

 if(setsid() == -1){

 perror(“setsid”);

 }

 i = 0;

 memset(buf, ‘\0’,
sizeof(buf));

 while((rval = recv(ds,
buf, sizeof(buf), 0)) > 0){

 printf(“Server read
(%d):>%s<\n”, rval, buf);

 /*

 * Concatenate until
we have it all

 * data[] should be
dynamically allocated!

 */

 memcpy(&data[i], buf,
rval);

 i += rval;

 if(i >= 8192) break;

 rval = 0;

 memset(buf, ‘\0’,
sizeof(buf));

 }

 /* we only do ‘GET’ and
‘PUT’ */

 if(data[0] == ‘0’ ||
data[0] == ‘1’){

 if(readtoken(ds, data)
== 0){

 printf(“Server
%d:Done\n”, getpid());

 if(close(ds) !=
0){

 perror(“Server
close socket error”);

 }

 exit(0); /* child
can quit now */

 } else {

 printf(“Server
%d:Finished with errors\n”,

getpid());

 if(close(ds) !=
0){

 perror(“Server
close socket error”);

 }

 exit(-1);

 }

 } else {

 printf(“Server
%d:Received corrupt message\n”,

getpid());

 }

 break;

 default:

 printf(“Server
%d:Listening for next connection\n”,

getpid());

 waitpid(ppid, &status, 0);

 break;

 }

 }

 }

 /* we’ve finished with the queues, let’s
delete them */

 if(msgctl(qd, IPC_RMID, NULL) == -1){

 perror(“msgctl RMID”);

 }

 if(msgctl(qe, IPC_RMID, NULL) == -1){

 perror(“msgctl RMID”);

43

 }

 printf(“Server done\n”);

}
/* main */

Additionally, we’re going to need some other
functions, to do the housekeeping for us.

First, the message parser:

/**

 * Parse the message header, and extract the
message. The raw format is:

GET or PUTQueue name Length of
msg + type

type msg.....

 1 byte 23 bytes 4 bytes 4 bytes | 8192
bytes...|

 0 1 23 24
27

28
31

| 32

 * Which is defined as:

 * struct xmsg {

 * char mode; -> ‘1’ = GET, ‘0’ = ‘PUT’

 * char qname[23];

 * int length;

 * unsigned char mesg[8192];

 * };

 *

 * Note that the ‘mesg’ member is what we actually
need to enqueue the msg,

 * and is in the format:

 *

 * struct {

 * int type;

 * char txt[8188];

 * } qdata;

 *

**
*******************************/

readtoken(s, token) /*
readtoken */

int s;

unsigned char *token;

{

pid_t pid;

unsigned int priority;

int rval;

int nwrite;

char name[25];

char mode;

int length;

int i;

 printf(“\nChild server PID %d running\n”,
getpid());

 msg = (struct xmsg *)token;

 strcpy(name, msg->qname);

 mode = msg->mode;

 length &= 0x00; /* make a
number out of chars */

 rval = 0x00 | token[24];

 rval = rval << 24;

 length |= rval;

 rval = 0x00 | token[25];

 rval = rval << 16;

 length |= rval;

 rval = 0x00 | token[26];

 rval = rval << 8;

 length |= rval;

44

 length |= token[27];

 printf(“Token data: queue >%s< mode >%c<
length %d\n”, name, mode, length);

 for(i = 28; i < rval; i++){

 printf(“%c”, token[i]);

 }

 printf(“\n”);

/*

 * This is artificial, since we need to examine the
channel

 * details, to find out which queue goes
where

 */

 if(mode == ‘1’){
/* GET (De-queue) */

 if(strcmp(name, “MQ1”) == 0){
/* Inbound queue */

 dequeue(qd, s);

 }

 else if(strcmp(name, “MQ2”) == 0){
/* Outbound queue */

 printf(“Doing GET from outbound
queue\n”);

 dequeue(qe, s);

 }

 } else {
/* PUT (Enqueue) */

 if(strcmp(name, “MQ1”) == 0){
/* Inbound queue */

 printf(“Doing PUT to inbound
queue\n”);

 enqueue(qd, length, &token[28]);

 }

 else if(strcmp(name, “MQ2”) == 0){
/* Outbound queue */

 enqueue(qe, length, &token[28]);

 }

 /* We now need to forward this message
to the address at the other

 * end of this channel

 */

 forward(token, name);

 }

 return(0);

} /* readtoken */

Now, here are the enqueuing and dequeuing
functions:

enqueue(qdd, length, token) /*
enqueue */

int qdd;

int length;

unsigned char *token;

{

unsigned char *xsg;

struct msqid_ds atr;

 printf(“Server enqueuing messages...\n”);

 if(msgsnd(qdd, (void *)token, length, 0)
== -1){

 perror(“msgsnd”);

 }

 memset((char *)&atr, ‘\0’, sizeof(struct
msqid_ds));

 if(msgctl(qdd, IPC_STAT, &atr) == -1){

 perror(“msgctl STAT server”);

 } else {

 if(atr.msg_qnum > 0){

 printf(“Placed %d messages (%d
total bytes) on q %d\n”, atr.msg_qnum

, atr.msg_cbytes, qdd);

 }

 }

45

} /* enqueue */

dequeue(qqd, s) /* dequeue
*/

int qqd;

int s;

{

struct xmsg ndata; /* data from TCP/IP
*/

int i;

int rval;

int nwrite;

long typ = 0; /* get 1st available msg */

int flg = 0; /* block until msg arrives */

struct msqid_ds atr;

 printf(“Client collecting messages from
queue...\n”);

 memset((char *)&qdata, ‘\0’,
sizeof(qdata));

 while((rval = msgrcv(qqd, (void *)&qdata,
sizeof(qdata), typ, flg)) != -1){

 printf(“Server read %d bytes of type
%d queue %d data:\n”,

rval, qdata.typ, qqd);

 sprintf(ndata.qname, “MQ%d”, qqd);

 ndata.length = rval;

 ndata.mode = 0;

 ndata.mesg.typ = 9;

 memcpy(ndata.mesg.msg, qdata.msg,
rval);

 for(i = 0; i < rval; i++){

 printf(“%c”, qdata.msg[i]);

 }

 printf(“\n”);

 if(rval > 0){ /* no point writing
nothing */

if((nwrite = send(s, (void *)&ndata, rval, 0))
< rval){

 perror(“Server: write to
socket”);

 free(xsg);

 return(-1);

 } else {

 printf(“Server %d: sent %d
byte msg to client\n”,

getpid(), nwrite);

 }

 } else {

 printf(“Strange: zero-length
message on queue...\n”);

 }

 memset((char *)&qdata, ‘\0’,
sizeof(qdata));

 memset((char *)&ndata, ‘\0’,
sizeof(ndata));

 memset((char *)&atr, ‘\0’,
sizeof(struct msqid_ds));

 if(msgctl(qqd, IPC_STAT, &atr) != -1){

 if(atr.msg_qnum == 0){

 printf(“No more messages\n”);

 break;

 } else {

 printf(“%d messages left (%d
bytes) on q %d\n”, atr.msg_qnum, at

r.msg_cbytes, qqd);

 }

 } else {

 perror(“msgctl STAT dequeue”);

 }

 }

 printf(“Server de-queued q %d\n”, qqd);

 free(xsg);

} /* dequeue */

46

The Client Code

Our queue manager, as coded above, will work
stand-alone, and GET and PUT messages to the two
queues it created. What it won’t do, is to forward the
messages to remote sites. This is because, it needs
to behave as a client in order to do that.

The following code creates a standalone client,
which we can be used in place of the ‘user
application’, and which the reader is encouraged to
incorporate, as a set of functions, into the queue
manager.

First, we need much the same definitions, as we did
with the server:

struct sockaddr_in sa;

struct hostent *hp;

struct servent *svc;

int a, s;

char hostname[2048];

unsigned short portnum;

char buf[8192];

unsigned char *token;

int nread;

int nwrite;

char mode;

char queue[23];

char srcfile[255];

struct qdata {

 long typ; /* 0=1st on queue, n=1st
of type n, -n=1st of <n */

 char txt[8192];

};

int qd, qe; /* forward, reverse
queues */

struct xmsg { /* data from TCP/IP */

 char mode; /* 1 = GET, 0 = PUT */

 char qname[23]; /* MQ1=inbound
MQ2=outbound */

 int length;

 struct qdata mesg;

};

struct xmsg msg;

int *xint;

char *xsg;

main(argc, argv) /* main */

int argc;

char **argv;

{

unsigned char *p;

int i;

int flag = 0;

int slen = 1000000; /* socket buffers */

 if(argc < 2){

 printf(“Usage: mqclient <host> <queue>
<1=GET|0=PUT> [file]\n”);

 exit(-1);

 } else {

 strcpy(hostname, argv[1]);

 strcpy(queue, argv[2]);

 mode = argv[3][0];

 if(argc == 5){

 if(mode == ‘0’){

 strcpy(srcfile, argv[4]);

 } else {

 printf(“Wrong mode >%s<\n”,
argv[3]);

 exit(-1);

 }

 }

 }

47

 printf(“Client connecting to host %s\n”,
hostname);

 if((hp = gethostbyname(hostname)) ==
NULL){

 perror(“gethostbyname”);

 exit(-1);

 }

 if((svc = getservbyname(“ingreslock”,
“tcp”)) == NULL){

 printf(“%s doesn’t exist\n”);

 exit(-1);

 } else {

 portnum = svc->s_port;

 }

memset(&sa, ‘\0’, sizeof(sa));

 memcpy((char *)&sa.sin_addr, hp->h_addr,
hp->h_length); /* set address */

 sa.sin_family = hp->h_addrtype;

 sa.sin_port = htons((u_short)portnum);

 if((s = socket(hp->h_addrtype,
SOCK_STREAM, 0)) < 0){

 perror(“socket”);

 exit(-1);

 }

 if(setsockopt(s, SOL_SOCKET, SO_RCVBUF,
(void *)&slen, sizeof(slen)) < 0){

 perror(“Client setsockopt”);

 }

 if(setsockopt(s, SOL_SOCKET, SO_SNDBUF,
(void *)&slen, sizeof(slen)) < 0){

 perror(“Client setsockopt”);

 }

 if(connect(s, (struct sockaddr *)&sa,
sizeof(sa)) < 0){

 printf(“Unable to connect to %d\n”,
portnum);

 perror(“Connect”);

 close(s);

 exit(-1);

 }

 /* assemble the token */

 strcpy(msg.qname, queue);

 msg.mode = mode;

 msg.length = 0; /* this
gets set in readmsg() */

 msg.mesg.typ = 9; /* arbitrary
identification number */

 if(mode == ‘0’){ /* get that
which we wish to PUT */

 readmsg(&msg, srcfile);

 }

 token = (unsigned char *)&msg;

if((nwrite = send(s, token, sizeof(struct
xmsg), 0)) < sizeof(struct xmsg)){

 perror(“Write to socket”);

 exit(-1);

 } else { /* the write
succeeded */

 printf(“Client sent %d byte
token:>%s<\n”, nwrite, token);

 if(mode == ‘1’){
/* we asked to read msgs */

 printf(“Client waiting to read
queue...\n”);

 memset(buf, ‘\0’, sizeof(buf));

 flag = 0;

 while((nread = recv(s, buf,
sizeof(buf), 0)) > 0){

 printf(“\nRead %d byte
message:\n”, nread);

 for(i = 0; i < nread; i++){

 printf(“%c”, buf[i]);

 if(buf[i] == EOF &&
buf[i+1] == ‘\0’) flag = 1;

 }

 if(flag == 1) break;

 memset(buf, ‘\0’,
sizeof(buf));

 }

 printf(“\nReceived messages\n”);

48

 } else {
/* no reply needed */

 /* do nothing */

 }

 }

 close(s);

} /* main */

Now, we need to have our application read in
arbitrary data (like double-byte XML), and set it into
our data structure for transmission. The following
trivial function accomplishes this:

/***

 * Reads a double-byte XML message from a
file, and appends it to the

 * token array.

**
*****************************/

readmsg(where, file) /*
readmsg */

struct xmsg *where;

char *file;

{

int fd;

int i;

 if((fd = openfile,, O_RDONLY)) == -1){

 printf(“Can’t open %s\n”, file);

 return(-1);

 }

 if((nread = read(fd, buf, sizeof(buf))) >
0){

 /* we assume the message is never
bigger than the buffer */

 where->length = nread;

 printf(“Read %d byte message:\n”,
where->length);

 memcpy(where->mesg.txt, buf, nread);

 for(i = 0; i < nread; i++){

 printf(“%c”, buf[i]);

 }

 printf(“\n”);

 } else {

 perror(“Read XML”);

 return(-1);

 }

 close(fd);

} /* readmsg */

49

About The Author

Mark
Sitkowski is
a Chartered
Engineer and
a Corporate
Member of
the Institution
of Electrical Engineers in London. His early
career revolved around the writing of
analog and digital circuit simulators, and
digital signal processing applications. In
Australia, he moved to writing financial
software for the major banks, and
telecommunications software for Telcos,
besides conducting training courses on
Unix and database applications. Formerly
a consultant to Forticode Security, he
currently works with Design Simulation
Systems on mobile multi-factor
authentication systems. Design Simulation
Systems Ltd
http://www.designsim.com.auxmarks@exe
mail.com.au 
 

http://www.designsim.com.auxmarks@exemail.com.au
http://www.designsim.com.auxmarks@exemail.com.au
http://www.designsim.com.auxmarks@exemail.com.au
http://www.designsim.com.auxmarks@exemail.com.au

50

Want to know how to get started and configure a working home server?

Do not wait for a better moment!

Learn TODAY how to use the current ZFS capabilities to help us build a home file
server using FREEBSD 10.3

https://bsdmag.org/course/using-freebsd-as-a-file-server-with-zfs-2/

https://bsdmag.org/course/using-freebsd-as-a-file-server-with-zfs-2/
https://bsdmag.org/course/using-freebsd-as-a-file-server-with-zfs-2/

BLOG PRESENTATION

Dear BSD Readers,

I'm a Computer Engineer and entrepreneur. I've
loved computers since I was a kid. My first machine
was a 386 with 2 MB of RAM which ran DOS, and
since then, I've used about every possible machine
and OS that's available. I studied Computer
Engineering in Barcelona and then I worked for 8
years analyzing bioinformatics data using machine
learning. After leaving that job, I then had some
sabbatical time, during which I started some projects
and learned to use new tools, languages, and
systems. My dream has always been to find an AI
startup. While in college, 15 years ago, this was an
almost foolish idea. However, thanks to the
proliferation of tools and libraries, the
commoditization of GPUs, and the focus on AI
verticals, the AI field is growing strongly, and there
are many market opportunities to apply machine
learning to the enterprise. I’m now a founder at
Optimus Price, an AI-powered price recommender
for e-commerce: https://optimusprice.ai. You can
learn more about me at my page:
https://cfenollosa.com

Interview with Carlos
Fenollosa
Can you tell our readers about yourself and your
role nowadays?

I’m a founder at Optimus Price, a startup that
develops a SaaS for dynamic price
recommendations powered by Artificial Intelligence. I
am the CEO which means that, as an engineer, I've

had to learn many new skills: business development,
sales, management, administration and finances. It's
a whole new world, and a very interesting one;
businesses are a big pillar of today's world, and I
believe that a deep understanding of how they work
complements well the technical world and lets you
grow as a person.

How you first got involved with programming and
the OpenBSD world?

I first used a computer around 1992. It was an
obscure brand 386 laptop with 2 MB of RAM that I
used to "borrow" from my father when he wasn't
looking. My main stack was DR-DOS and later
Windows 3.1. We had to use what our parents
bought, usually cheap software and games, or
software copied from friends. Obviously, we didn't
have any Internet, so the only way to learn was by
reading library books and computer magazines. I
typed numerous QBasic listings by hand and
ultimately learned how to write my programs. Now
we jump forward in time for more than 20 years.
After quitting Windows and using Linux and OSX
exclusively for some time, I wanted to learn more
about UNIX systems. I experimented with FreeBSD
and OpenBSD, and liked both, but I really loved the
simplicity of OpenBSD. I found that it had more
differences from its cousin Linux than I expected,
and that’s why I wrote the article "OpenBSD from a
veteran Linux user perspective":
https://cfenollosa.com/blog/openbsd-from-a-veteran
-linux-user-perspective.html

51

OpenBSD From a Veteran
Linux User Perspective

https://optimusprice.ai/
https://optimusprice.ai/
https://cfenollosa.com/
https://cfenollosa.com/
https://cfenollosa.com/blog/openbsd-from-a-veteran-linux-user-perspective.html
https://cfenollosa.com/blog/openbsd-from-a-veteran-linux-user-perspective.html
https://cfenollosa.com/blog/openbsd-from-a-veteran-linux-user-perspective.html
https://cfenollosa.com/blog/openbsd-from-a-veteran-linux-user-perspective.html

While having a wide field of expertise, please tell
our readers on which area you put the most
emphasis and why?

I am probably best at designing and developing
software products. Solving problems with software is
my passion and what I do best, from small scripts to
bigger systems.

What was your the best work? Can you tell what
was the idea behind it? What was its purpose?

Maybe not my best, but I developed Bashblog, a
blogging engine in a 500 line bash script to scratch
my own itch. I wanted to write “./bb.sh post”, write
some Markdown text, and get it converted to a
single entry linked from an index page. I published it
on Github (https://github.com/cfenollosa/bashblog),
and it quickly grew in popularity. Now, it’s mostly
finished and it has a great community around it. It is
definitely my most successful free software project.

What is the most interesting issue you’ve
encountered, and why?

While working at the Barcelona Supercomputing
Center, we had all office machines on an SGI cluster
to launch long jobs overnight. However, one very
specific job failed randomly. Long story short, after
about a week of debugging, we discovered that
some of the machines had a CPU which didn’t
support a very specific CPU opcode. Even though
the software was a Python script, one of the libraries
(numpy) had been compiled on a machine with that
opcode, so it segfaulted on older CPUs.

What was the most difficult and challenging event
in your life? Could you give us some details?

Probably having to sell my product to people. As a
product person and an engineer, I was terrified the
first times I met with clients and tried to sell them my
product. It turns out that selling is another skill you
can learn, and clients appreciate meeting with an
engineer and not a salesperson, it gives you more
credibility.

What future do you see for FreeBSD and other
OSes? Can you tell us about your favorite
features in the new releases.

I think the future will bring a clear divide between five
product families: laptops/desktops, servers, mobile,
and IoT. The BSDs have a fairly good market share
on the server, but they will probably remain a niche
in laptops and desktops as they are today. I don’t
think they will lose market share, though. The big
question is the future of mobile and IoT. Mobile is
now dominated by Android and iOS, and having
been a developer of both, I can see Android evolving
heavily or being replaced by something else in the
future. I’m not sure if it will be another iteration of
Linux or a BSD, but its current architecture and
extreme fragmentation both by device and
manufacturer has many problems. Regarding IoT, we
all have seen what happens when you deploy tiny
CPUs with nonexistent security and flawed OSs and
services. This is a clear opportunity for the BSDs.
The embedded world will evolve to more powerful
and power-efficient chips, and an embedded BSD
kernel + userland would be very attractive.

Do you have any specific goals for the rest of this
year?

I want my company to grow and be able to deliver a
great product. If only I could find some time to
improve on my github projects...

What’s the best advice you can give to the BSD
magazine readers?

The BSD magazine audience is probably much more
skillful than me in many respects, so maybe I can
give some advice regarding product development. It
is definitely true that it takes 80% of the
development time to finish up the last 20% features
to launch a product. However, that is also the time
you need to show your still unreleased prototype to
your target market, be it a company or just some
fellow developers. Otherwise, you will waste your
time developing a product that only works for you.
This is not wrong per se, but you will miss out on the
enjoyment of watching other people use the product
you’ve worked so hard on.

Thank you

Thanks for reading!

52

https://github.com/cfenollosa/bashblog
https://github.com/cfenollosa/bashblog

OpenBSD From a Veteran
Linux User Perspective
For the first time, I installed a BSD box on a machine
I control. The experience has been eye-opening,
especially since I consider myself an "old-school"
Linux admin, and I've felt out of place with the latest
changes on system administration. Linux is now
easier to use than ever, but the administration has
become more difficult. There are many components,
most of which are interconnected in modern ways.
I'm not against progress, but I needed a bit of
recycling. So instead of adapting myself to the new
tools, I thought, why not look for modern tools which
behave like old ones? This article discusses some of
the main differences between OpenBSD and Linux,
from a Linux admin perspective. There are some
texts on the net discussing the philosophical
differences between BSDs and Linux, but not many
of them are really hands-on. This one is the best,
and I recommend you to read it along with this one.
Since I am new to OpenBSD, I may get some things
wrong. Please email me any corrections. However,
my goal is to point out my first impressions.
Therefore, if there are any Linux users reading and
thinking about making the jump, they can know what
to expect.

The "RAMDAC" running joke

First, some background about my Linux experience.

My first computer was a 386 with DOS and Windows
3.1. I had played with Spectrums, Commodores, and
IBM PCs (8086). I followed the traditional Windows
path: 3.1 -> 95 -> 98 -> ME -> 98 -> 2000. But I
always liked computers, and the most visible part of
them, besides the hardware, is the OS. I tried to
install my first Linux distro on 1999. It was a Red Hat
Linux 5.2, if I remember correctly, I got the CD from
a magazine because I was still running a dial-up. I
was 15 and I thought I knew computers, after all, I
had assembled my own, an AMD K6-2 box, from
parts.

Red Hat proved me wrong.

Which is your chipset?

Man, I didn’t know

Which is the model of your RAMDAC?

What is a RAMDAC?

I need your monitor modelines. Don't get them
wrong or you will physically damage your CRT

Dude, I'm 15, I can't afford to break anything!

In the end, I didn't break my monitor, but got a black
screen which said login:, and didn't know what to
do, so I booted back into Windows and played a bit
of Warcraft 2.

In that age, we only had one computer. So if you
were installing something and needed help, you had
to stop, reboot into Windows, dial up the modem,
search the Usenet or forums, write down the solution
on a piece of paper—no ubiquitous printers—, hope
you got the commands right, reboot, start the
installation over, reach the point where you
previously were, and apply that solution. Not
practical at all.

The best help we had were books, and those were
expensive and difficult to find in a small town
bookstore. For those of us not fortunate enough to
buy/find books, we had hobbyist magazines. In
Spain, there were a few imported and poorly
translated magazines which were expensive, but
carried some CDs, the only practical way to get
distros.

The first Linux I was able to use was Mandrake 6.0.
It had a graphical installer—not that having graphics
made any real difference to the final result— but it
auto-detected my hardware correctly and booted
into X. Yeah! Old Linux software! A game called
Nethack which had nothing to do with hacking!
sysconfig!

Unfortunately, I couldn't connect to the internet
because of my Winmodem. Thus, after a few days of
tinkering, Mandrake was wiped too.

Months later, I got myself a BeOS CD. It was like
Linux, which for me, then, meant it was not
Windows. The setup ran totally effortless and it even
detected my Winmodem. The internet ran faster than

53

https://www.over-yonder.net/~fullermd/rants/bsd4linux/01
https://www.over-yonder.net/~fullermd/rants/bsd4linux/01
http://archive.download.redhat.com/pub/redhat/linux/7.1/kr/doc/RH-DOCS/rhl-ig-itanium-en-7.1/figs/textmode/monitor.gif
http://archive.download.redhat.com/pub/redhat/linux/7.1/kr/doc/RH-DOCS/rhl-ig-itanium-en-7.1/figs/textmode/monitor.gif
http://www.betaarchive.com/imageupload/2014-12/1419415455.or.26035.png
http://www.betaarchive.com/imageupload/2014-12/1419415455.or.26035.png

on Windows. It had a great internet browser, mail
and newsgroup clients. Oh, boy! I used BeOS for a
long time almost exclusively and only booted
Windows to play some games.

A couple of years later, I started Computer
Engineering in college. So, I wiped out everything
and installed Linux. I got a new machine and a real
network connection.

I've run lots of Debians, Red Hats, Mandrakes,
Gentoos and Slackwares. We used Solaris and even
some VAXes. I ran some servers for student
organizations, and finally settled on Debian as "the
best" distro: stable, easy to use, no need to compile
on our 486, nice hardware detection and with a big
community. Finally, I moved to Ubuntu, only
because of its LTS releases. Around 2006, I got into
Macs, which at first seemed like a nicer Linux, and
now I appreciate the hardware+software combo for
which I know I won't have to fight with its drivers.

In summary, I've seen a lot on UNIX, even more on
Linux, and administered a good chunk of them. My
servers have always run some sort of Debian. You
could say that as I grew older, I also grew tired of
fighting with RAMDACs, modelines and
Winmodems. Each age brought new "RAMDACs":
CD recording, wireless card support, laptop
hibernation, webcams, Divx playing, DVD playing,
NTFS support etc. Linux always worked on the
server but had some quirks in the desktop which
made it somewhat unattractive for daily use, even
when I run it exclusively on my laptop. Nowadays,
Macs offer a UNIX with some peace of mind, and the
current status of Linux is good enough. Some of the
friends I evangelized long ago—I quit doing that—
still use Ubuntu and are happy with it. Linux may
never triumph on the desktop (or laptop), but it's
good enough for most.

Upgrading a G4 Mac Mini

Now jump to 2015. My home server, a G4 Mac Mini,
was already two Debians behind. Some packages
weren't ported to powerpc. I needed to perform a
clean install and upgrade the whole system either
way. But this time, I didn't want to use a Linux
installation which wants me to reboot every 5 days

because of some critical patch. I'm looking at you,
Ubuntu.

As you can imagine, my operating system
fascination didn't fade out, only my time. I had been
closely following the BSDs and using a NetBSD shell
account, installed Plan 9 on a virtual machine, and
even wrote a toy OS project.

I'm not afraid of compiling stuff—I do it for a living—
and may even be open to modifying some code if
needed. Why not try something new? Since I had the
weird powerpc requirement, I ruled out most
operating systems. Finally, I decided to play
relatively safe and go for a BSD. FreeBSD is the
most popular, has more online HOWTOs, and
probably more features (ZFS, Jails etc.), though I
probably would not be using them. OpenBSD is
more hackable, seems to have better
documentation, and some cool people I know who
use it. I didn't want to quit using a pot to start using
a kettle, so I downloaded OpenBSD's install57.iso It
was impossible to boot the Mini with a USB stick;
I'm unsure if it's the firmware's fault or the fact that I
was adding the .iso file into the USB instead of the
.fs one which didn’t seem to be available for
macppc.

I found some blank DVDs on a closet, borrowed a
computer with a DVD drive—another medium I
hadn't touched in years—, and burned the ISO
image. The fact that I recorded the first disk with the
ISO file on the root folder instead of properly burning
the contents into the DVD warned me that this was
going to be hard, but fun. Surprisingly, the
installation was straightforward. It detected the
10-yr-old hardware, and by following the
instructions, I managed to partition the disks and
install the boot loader. Eventually, the box was up
and running. Well, that wasn't so hard, was it? Now,
to restore my old installation. Hm, first of all, bash
needs to be installed from packages and goes into
/usr/local/bin. Therefore, I had to modify a lot of
scripts which pointed to #!/usr/bin/env bash. The ps
and tar commands have slightly different switches
which broke other scripts. The base services are
different; OpenBSD includes its own HTTP, SMTP
and NTP servers. Configuration files are in different
places. Here goes my week...

54

http://cfenollosa.com/blog/the-sdf-public-access-unix-system----est-1987.html
http://cfenollosa.com/blog/the-sdf-public-access-unix-system----est-1987.html
http://cfenollosa.com/blog/the-sdf-public-access-unix-system----est-1987.html
http://cfenollosa.com/blog/the-sdf-public-access-unix-system----est-1987.html
https://github.com/cfenollosa/os-tutorial
https://github.com/cfenollosa/os-tutorial

GNU is really not UNIX

A quick note on the GNU/Linux naming discussion,
since GNU is entering the equation now. I use the
term "Linux" for simplicity. I know that's the kernel
name. It also happens to be the popular name, even
if not totally correct—according to some. Here is
some food for thought; why does the FSF deserve
more credit on the name than, say, the Apache
Foundation, or the FreeDesktop project, or BSD, for
that matter? Why don't we include every key
component of the name and call it
GNU/FreeDesktop/Apache/OSI/BSD/.../Linux?
Including only GNU would be unfair to other big
contributors, wouldn't it? So, let's please stop this
fight. That being said, the GNU tools and design
philosophy make a noticeable difference in
administration and userspace, and one can only
appreciate it when switching to a different
environment. I don't want to overstate it, though.
Thanks to POSIX, a Linux admin can run BSD with
little extra effort since most of the things are similar.
There are, in fact, more similarities than differences.
If FreeBSD and OpenBSD are brothers, then Linux is
a close cousin. ls is always ls. mkdir is mkdir. But
when you're being used to /dev/hda, free -m and cat
/proc/cpuinfo you realize that having a different
kernel is naturally going to change some of the
administration tools. Some say that the GNU tools
are bloated and that the BSD toolchain is more "pure
UNIX". The reality is that it depends on the specific
GNU tool. I've personally found that GNU tools are
more complex because they're more powerful,
though they are less UNIX-like (do one thing only
and do it well) and more like complete solutions.
That's fine; different, but fine. After all, GNU is not
Unix! In recent years, the Linux environment has
grown in the GNU toolchain fashion, not the UNIX
fashion. One may even say it has grown in the
Windows fashion: be practical, be accommodating
to all, be fast, and be modern. There have always
been debates about "bloated and complex code".
More recently, systemd. Previously, Apache,
sysconfig, iptables/iptools.... The list goes on and
on. Wheel out comp.os.linux and look at the flame
wars. No software fits all nor should be shamed for
its design decisions. In the end, with a few critical
exceptions like OpenSSL and the Heartbleed bug, it
is just a matter of taste: does the admin prefer

simple, pluggable services, or bit monolithic suites?
Compatibility or modernness? Familiarity or shiny
new things? Standards or NIH? I had been riding the
Linux wave for years, until I recently realized that my
admin skills needed a total recycling. In a few years,
we've gone from /etc/init.d/sshd restart to service
sshd restart to systemctl start sshd. That's a bit fast
in my opinion. However, I understand it's the price of
progress aimed to make computers boot faster and
theoretically easier to administer for newcomers. Old
admins, on the other hand, have a harder time
adapting. Having to choose between recycling into
an always changing Linux or a more stable UNIX
environment, I chose OpenBSD. Given my history of
trying all possible OSs, Let me state again that I'm
not against the recent Linux direction. I just wanted
to go out and see if there is a different way to do
things.

Differences between OpenBSD and Linux

Maybe you're reading this article for its practical
value and not for my ramblings, sorry. I thought I had
to provide some context. I'm used to googling,
RTFMing, and to reading source code to learn what
software does. This context is important to judge if
you would notice the same differences as I did.
Here's a list of things that surprised me the most
after completing an OpenBSD install, adapting my
old setup to the new environment and running it for a
few days.

Simplicity

First of all, everything is much simpler, like the Linux
old days. Not necessarily easier, but simpler. More
minimalistic. I found this plays well with my mind.
OpenBSD follows the UNIX philosophy more closely:
lots of small components that do one thing and talk
between them by passing text. Because of that,
some base components are not as feature-rich, on
purpose. Since 99% of the servers don't need the
flexibility of Apache, OpenBSD's httpd will work fine,
be more secure, and probably faster. For those who
need the big boys, just install Apache from the
packages. Having a developer-chosen default option
for many servers is a time saver. The admin knows it
will be well supported and documented, and tightly
integrated with other components. The alternative,
the Linux way, is to just use what everybody else

55

http://suckless.org/sucks
http://suckless.org/sucks
https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Heartbleed
http://www.jwz.org/doc/cadt.html
http://www.jwz.org/doc/cadt.html
http://www.jwz.org/doc/cadt.html
http://www.jwz.org/doc/cadt.html
https://en.wikipedia.org/wiki/Not_invented_here
https://en.wikipedia.org/wiki/Not_invented_here
http://www.catb.org/esr/writings/taoup/html/ch01s06.html
http://www.catb.org/esr/writings/taoup/html/ch01s06.html

uses (Apache), or choose one of the multiple
options, always wondering if it's the right one—
nginx? lighttpd? thttpd? You know what... nobody
got ever fired for choosing Apache

Design decisions

Picking up on that thought, the system is very
opinionated. When the community decides that
some module sucks, they develop a new one from
scratch. OpenBSD has its own NTPd, SMTPd and,
more recently, HTTPd. They work great. Likewise,
the standard shell is pdksh. The OpenBSD FAQ
states that "Users familiar with bash are encouraged
to try ksh(1) before loading bash on their system -- it
does what most people desire of bash.", which is a
bit too bold. ksh does not support history
substitution (sudo !!:1) which I use a lot, though I
agree that for many users it will be enough. Many
people hate bash for some reasons. I am not one of
them. Having a super powerful shell has saved me
from writing perl scripts for system administration.
Bash can always be installed from packages,
anyway. This is a big difference from Linux, which is
more like a "consensus" operating system.
Developers have to keep compatibility and whenever
there is a controversial design decision like systemd,
dozens of projects decide to fork. Not good. Strong
opinions, on the other hand, also lead to less
support for some, like ext4, ZFS or Linux binary
compatibility. For example, ext4 is officially
supported read-only but in my case it didn't read
some folders properly. FreeBSD plays better on that
regard, though they also have more developer
manpower. This leads to some use cases, like an
OpenBSD desktop, being possible but not the best
choice for this OS. Finally, other decisions make little
sense. According to disklabel(8), the /usr partition
takes about 2G of disk space, not including /usr/src
or /usr/obj. This means that there is little space to
hold what is essentially the whole system plus ports.
I had trouble compiling large ports since /usr ran out
of disk space. If a large number of users will be
compiling some ports, why not set a larger /usr by
default?

Documentation

The man pages are excellent, a delight. Unlike Linux,
they are not just a list of switches for the software,

but a comprehensive guide to the tool, with lots of
examples. They are much, much better—thankfully,
because unlike Linux, again, there are not tons of
help on public forums. OpenBSD's man pages are
so nice that RTFMing, somebody on the internet is
not condescending but selfless. Granted, I wouldn't
make a UNIX novice run OpenBSD from man pages.
But for an experienced admin, they contain exactly
the information they need.

Small differences in common tools

Using the BSD toolchain instead of the GNU one
means there are small differences between the tools.
For example, some ps switches are missing, like the
useful -f. The tar options for reading from stdin are
also slightly different. When ls is run by root, it
automatically appends all hidden files.

df has -h (human) and -k (kilobytes), but no -m for
megabytes.

If you've used MacOS you probably know a few of
these.

Packages

OpenBSD has packages, like Linux. Unlike it,
packages are only available for 3rd party software,
not the base system. OpenBSD's base system is
more or less what gets installed from the CDs:
kernel, shell, coreutils, a small part of X and essential
servers (http, ntp, smtp, etc.) Everything else must
be installed from packages. The documentation
recommends using packages since it is not worth it
to compile from ports—the package sources.
However, packages don't get security updates. The
only way to patch bugs is to compile the ports.
Fortunately, there is a simple way to use the best of
both worlds: add FETCH_PACKAGES=yes to
/etc/mk.confand install software from ports. The
system will automatically fetch the package and
save the compilation time if there is a current binary
available. Another interesting tool is
/usr/ports/infrastructure/bin/out-of-date, which
checks which ports need an update. So, you can go
to /usr/ports/<portname> and make update. This
command plays well with previously installed
packages. Therefore, you don't have to worry
deleting them first.

56

http://www.openbsd.org/faq/faq9.html
http://www.openbsd.org/faq/faq9.html
https://xkcd.com/927/
https://xkcd.com/927/

In summary, after you install the release, if you're
interested in getting security updates until next
release, the officially recommended path is to follow
-stable, use FETCH_PACKAGES and work from
ports. This is not very clear in the documentation but
the folks at #openbsd helped me figure it out. As a
colophon, if you're using x86 or amd64, m:tier
provides binary updates for the base system and
packages, much like Linux does. Otherwise, if there
is any bug in the base system, you'll need to
recompile that part yourself. The amount of
compiling needed will be determined by the patched
component and any related software. Hence, just
read the instructions on the patch.

Configuration files

The base system config files are properly centralized
in /etc, but not the ports. The porting quality is
excellent, better than any Linux distro. Every port is
adapted to the OpenBSD system and made sure it
behaves correctly. However, some maintainers
decide that all the port files need to be contained in
some folder, like transmission-daemon, which stores
its config into
/var/transmission/.config/transmission-daemon/setti
ngs.json. It's a bit crazy to store a system-wide
daemon config file into /var which, according to man
hier, contains Multi-purpose log, temporary,
transient, and spool files. Apparently some daemons
are chrooted by default, and there is a global
"catch-all" README folder on
/usr/local/share/doc/pkg-readmes which contains
specific info about packages. transmission-daemon
had no related info, so maybe I'll contact the
maintainer.

Chroot

Speaking of roots, nearly all daemons in the base system
are chrooted and privstep by default. The base system
has a lot of hardening by default, which is one of the
main reasons why OpenBSD has almost no remote holes
on the default installation. Since chrooting software in
Linux can be cumbersome, it's very convenient to get it
done for you, so thanks!

Experienced community

I feel like the learning curve is a feature, not a bug,
intended to keep newcomers away. OpenBSD is

unapologetically elitist. Honestly, I don't mind that.
I've been administering systems for more than a
decade and not all environments are for everybody.

OpenBSD can afford to be elitist because it is a
small system, with a clear direction, the
documentation is crystal clear, and it doesn't make
vague promises.

make build

As you can see, there is a big con to using OpenBSD
coming from a Linux world, the process for patching
security issues. On Linux, I was used to run a single
command and let any part of the system (base or
3rd party) update itself. With OpenBSD, it takes a lot
more effort and time, especially in my old machine.
This process leaves the admin only one realistic
option: follow the -stable branch, which is basically
the same code as the CD release with small patches,
and recompile stuff regularly. Otherwise, the installed
system will be exposed to potential security holes
until the next release. I feel that this needs to be
more prominent in the OpenBSD docs, especially on
the Migrating to OpenBSD section: if you want an
updated and stable system you'll need to recompile
stuff constantly, there is no equivalent to apt-get
upgrade. To get a secure production system with
OpenBSD, the officially recommended path is to:

• Install the CD release

• Download the source code

• Recompile the kernel (recommended by "following
-stable")

• Recompile userland

• Download ports tree

Add FETCH_PACKAGES=yes to /etc/mk.conf to let
ports fetch packages, if available, and install
software using the ports syntax. Recompile when
there is a security issue which affects your setup,
though you may skip some compiling if using m:tier.
Of course, this is a feature, not a bug, but it's the
biggest admin change from old Linux users. That's a
lot of effort compared to apt-get update && apt-get
upgrade. Honestly, had I known it, I would've more
strongly considered keeping my Debian installation. I

57

http://www.openbsd.org/stable.html
http://www.openbsd.org/stable.html
http://www.openbsd.org/stable.html
http://www.openbsd.org/stable.html
https://stable.mtier.org/
https://stable.mtier.org/
http://www.openbsd.org/faq/faq9.html
http://www.openbsd.org/faq/faq9.html

read all the online documentation before installing
OpenBSD, and I felt like this point wasn't really clear.
Since you can safely use -stable ports/packages
with a -release base system, steps 3-4 can be
avoided or shortened if you don't want to update
your base to -stable. That's what I would
recommend to former Linux users, but take this
newbie's advice with a grain of salt. In any case, for
low-performing machines like mine, maybe the
"recommended" path to follow -stable and rebuild
the source for every errata is not the best one. For
small fixes, it may be better to apply the patch and
follow its instructions. Apparently in faster machines,
it's more convenient to recompile the base system
since it takes just a few minutes. Had I been using
x86 or amd64, I'd have totally gone for m:tier. So you
can dismiss this section if that's your case. To be
totally fair, it's rare for OpenBSD to have remote
holes on the CD release. Thus, one could be
relatively safe by only upgrading from release to
release. But the truth is that there is no simple way
to binary patch for critical updates unless using the
third-party m:tier on one of the supported
architectures. With that it mind, to summarize,
consider the following options:

Use a -release base and -stable ports (with
FETCH_PACKAGES=YES), cherry-picking patches
from base and updating ports by make update. This
may be the recommended path for low-performing
machines.

Use a -stable base, too. You can then update the
whole system with a handful of commands and
won't need to follow patch instructions.

Use -release and update from m:tier

Keep using -release until a next -release comes,
unless there is an unlikely remote hole that forces
you to recompile the base. This may be the best
option for newbies if the only person using the box is
the admin, so there is no way to suffer local attacks.

Conclusion

From a user perspective, all of this is transparent;
OpenBSD has a UNIX terminal or Xwindows session
and everything works as expected. But a Linux

admin will need to adapt to these new tools and
allocate some more time for administration.

OpenBSD has pros and cons. Personally, my main
pros are the excellent documentation, its minimalism
and the choice of default daemons. The only con is
the need to recompile to patch errata. If I had just
one wish for OpenBSD, it would be a more
straightforward updating system for security errata.

Now, the dreaded question. Is it worth it?

Honestly, I wasted too much time. Some of it was to
be expected, since I needed to learn a different
environment. Had I been 10 years younger, this
wouldn't have been a problem, but my time is more
limited now. The fact that I needed to compile things
on an old machine probably didn't help. Keep that in
mind when considering a BSD for an old, weird
architecture. After the initial investment, I want to see
if maintenance is easier and release upgrades are
smoother than with Debian. Manually upgrading
things is a pain in the neck, but all other factors lead
me to think that OpenBSD is a great server OS.
Maybe I was expecting something else from the
docs I read. It is probably my fault, though. Anyway, I
want to contribute to the available documentation by
writing this document so that other Linux admins
can make a more informed decision. On the other
hand, my geeky side is content. OpenBSD rocks. It
is a different—a real—UNIX and I've really come to
appreciate simple code and software. As an admin,
having minimalistic, default servers is a blessing.
Again, should you try OpenBSD? The answer is yes,
though be careful if you're either in a rush or have
specific software requirements. The first days are a
bit hard, and recompiling on a slow machine takes
time.

If you like UNIX, it will open your eyes to the fact that
there is more than one way to do things, and that
system administration can still be simple while
modern.

Revised with contributions from TJ and Mike.
Thanks!

58

http://www.bsdnow.tv/
http://www.bsdnow.tv/
https://mike-burns.com/
https://mike-burns.com/

INTERVIEW

Interview  
with Felix Weinrank
Felix Weinrank is a computer scientist from Germany.
He is currently a Ph.D student in the Department of
Electrical Engineering and Computer Science at Münster
University of Applied Sciences. His research interests
include the SCTP transport protocol, low-latency
Internet communication and network emulation.

Can you tell our readers about yourself and your role nowadays?

I am a Ph.D student in the Department of Electrical Engineering and Computer Science at Münster University of
Applied Sciences.

Currently, I am involved in two research projects which are related to transport protocols. The first project, in
cooperation with the University of Duisburg-Essen and funded by the German Research Foundation, seeks to
improve the interaction of media and non-media streams in WebRTC peer-to-peer communication.

59

The second project, in cooperation with several European partners from universities and industrial companies,
offers application developers a new and unified API for network communication. You will find more details at
www.neat-project.org.

How did you get involved with computer science?

I was about seven or eight years old when I became fascinated by my father’s computer. I played around with it
whenever possible – and I often broke it. 
So, he gave me an old second-hand Intel 486 and from then on, I was responsible to fix it. I learned a lot about
the technical background and was always curious how the things work.

While having a wide field of expertise, please tell our readers on which area you put the most emphasis
and why?

I put most of my emphasis on improving the SCTP protocol.

It is very flexible with respect to the development of new extensions and can be used for many use cases. Since
SCTP is part of the WebRTC stack, where it is used as the transport protocol for Data-Channels, it is widely
deployed and integrated into almost every browser.

What tools do you use the most often and why?

First of all, the Atom editor. I like the balance between the lightweight design and the endless ways to extend it.

Since I am usually programming code in C, there are a lot of tools involved. Git, Clang, Valgrind and LLDB, to
only name some of them.

In addition to writing real networking code, we are using the OMNeT++ discrete event simulator in combination
with the INET framework. This allows us to implement and test new features before we integrate them into the
operating systems.

What was the most difficult and challenging issue you’ve done so far? Could you give us some details?

The current tasks my colleagues from Essen and I are working on. While real-time media streams aim to have
low delay, non-media streams always aim to use all the available bandwidth. These two behaviors are
controversial and we are working on mechanisms to combine them in an optimal way.

Do you have any specific goals for the rest of this year?

To finish some research papers and successfully publish them.

Thank you.

60

http://www.neat-project.org
http://www.neat-project.org

COLUMN

The gig economy giant, Uber, has had its operating licence suspended by
Transport for London. Apart from concerns over the way the company
operates, a more sinister reference was made to Greyball software which
effectively tricked law enforcement and those Uber didn’t wish to deal
with. Where should the line be drawn between good practice and
deception?

Rob Somerville has been passionate about technology since his early teens. A keen advocate of open
systems since the mid-eighties, he has worked in many corporate sectors including finance, automotive,
air- lines, government and media in a variety of roles from technical support, system administrator,
developer, systems integrator and IT manager. He has moved on from CP/M and nixie tubes but keeps a
soldering iron handy just in case.

For many years I have worked at the edge of the envelope where the bad guys reside. As a webmaster,
developer and security specialist, I have absolutely no time for those that choose to reside on the dark side and
profit from the misery of others, be that intellectual, financial or just pure ego and one-upmanship.
Undoubtedly, all serious IT professionals have messed around at some stage pulling IT related pranks on
colleagues and peers (my personal favourite was editing command.com with a hex editor, and changing the
error messages around) but with no long term damage, and a wry smile and a laugh on both sides. So, I’ll be
the first to admit when I come across a particularly cunning and devious piece of malware my first reaction
(after using a few choice words and picturing a particularly gruesome scenario involving the perpetrator) is to
respect the innovation, creativity and the “in your face” sheer audacity.

And so it is with the Silicon Valley incubators, innovators and disrupter’s. While the investors and venture
capitalists look for the next and best opportunity (the cunning of the malware), few sit back and look objectively
at the subtle and not so subtle changes that are going on behind the scenes. Google faced this same dilemma,
by setting information free the whole concept of property rights and intellectual ownership were thrown into
question. It has battled through though, and the general perception of the organisation is now one of the
benevolent dictator, with a huge insurmountable market share. Too big to fail, Google teeters between
innovation and establishment, almost suffering from an identity crisis that the market interprets as edgy.

Uber on the other hand, while an innovator, has required to morph into an entirely different giant than Google.
Whereas little of Google’s current territory was occupied, Uber has had to crush the opposition, and like some
form polymorphic virus change the classic business model so that the competition cannot challenge it legally or
competitively. Whereas Google is much more an ethereal company, only contacted via our keyboards and LCD
screens, you sit in an Uber and chat with the driver. Be it Google or Uber, however, the hidden hand of

61

technology is at work behind the scenes. Whereas Google’s focus is based on openness and sharing, Uber’s is
based on sharing and efficiency. Few people pay Google money. Every Uber user must. So, the model has to
be subtly different, despite the common goal of world domination and at the same time, busting through
preconceived ideas and moral frameworks. While Google can occupy like a settler in a new land, Uber must
push aside and crush the opposition. For both sides, realize it is one or the other, old school or new school.

Hence, a very nasty taste is left in one’s mouth when encountering such commercial tactics as Greyball. From a
purely brand and customer support angle it flies in the face of good practice. After all, if you can win over a
dissatisfied customer not only will you have secured a degree of loyalty that money can’t buy, but you will have
built that ethereal, invisible quality that “the brand” encapsulates. Think of unicorn, rainbows and chocolate.
But no, not only does Uber want to choose who its customers are, but also what level of weighing justice
performs with her scales. It is the ultimate in passive aggressive tactics, contempt disguised as nonchalance.

I’m an old-fashioned kind of guy, and I believe wholeheartedly in the rule of law, provided that the law is applied
equitably to everyone, including corporations and individuals. Tax questions aside, I don’t think Google would
have the bare faced cheek to stick the middle finger up to the established order in the same way that Uber has
achieved with Greyball. Though, it is interesting that after Dara Khosrowshahi, the Uber CEO, had apologized in
writing, the Mayor of London welcomed the re-opening of dialogue with Transport for London. Money talks, and
being accused of not being a fit and proper operator will obviously cost the company dearly if it loses London,
which will worsen if other major cities decide to follow suit. Maybe, Uber has just walked into the hallowed
arena, where they are too big to fail, least of all in the perspective of adding cultural value to the capital of
England. In a sense, they have outmaneuvered Google by being more evil yet at the same time closely following
in the path their geographical peer has hewn in the rock.

At the end of the day though, the whole moral and ethical question boils down to progress. As individuals,
consumers and technologists, our decision must be a holistic one – how much progress are we willing to
accept in hardware, society and our understanding of right and wrong? How long can an organisation that has
such power and influence remain impartial until their true motives are revealed? Google, after all promoted itself
on the basis of “Do no evil”. I don’t think that it is an overestimation to say that particular rhetoric is increasingly
being questioned, and the historical fact remains that large, innovative tech companies eventually swallow the
kool-aid of the military-industrial complex and end up in the fetal position in the quiet obscurity of the corner.
Think of IBM and HP. At one point, these companies, like Google and Uber are currently, were innovators. While
there might be the occasional flash of inspiration, they have sunk into the swamp of safety, conformity,
establishment and the bedrock of the pension fund. Risk adverse, grey haired and creaking a bit at the joints.
And I have no doubt that both Google and Uber will eventually follow that path as well, given sufficient time.

62

63

64

Become a Python Programmer
today and start learning one of
most-wanted skills of 2017!

T h i s i s t h e m o s t
comprehensive course for the
P y t h o n p r o g r a m m i n g
language. If you want to start
programming or if you want to
learn about the advanced
features of Python, this course
is for you!

In this course we will teach you :

	 •	 understanding python and how to install it

	 •	 understanding python virtual environments

	 •	 using the interpreter and running a python script

	 •	 advanced text editors for coding

	 •	 understanding basic python data types

	 •	 knowing what classes are and how to use them

	 •	 understanding exceptions and know how to handle them

	 •	 knowing how to get data from a publicly accessible API

	 •	 understanding the concept of duck typing

	 •	 understanding how files work

	 •	 understanding the csv python module to read/write csv files

	 •	 anding how to hit API’s to get information

	 •	 understanding how data should be structure to feed plot module

	 •	 using python plotting library

https://bsdmag.org/course/python-programming-coming-next/

https://bsdmag.org/course/python-programming-coming-next/
https://bsdmag.org/course/python-programming-coming-next/

