

2

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

3

Backed by a 1 year parts and labor warranty, and
supported by the Silicon Valley team that designed
and built it

Perfectly suited for SoHo/SMB workloads like
backups, replication, and file sharing

Lowers storage TCO through its use of enterprise-
class hardware, ECC RAM, optional flash, white-
glove support, and enterprise hard drives

Runs FreeNAS, the world’s #1 software-defined
storage solution

Unifies NAS, SAN, and object storage to support
multiple workloads

Encrypt data at rest or in flight using an 8-Core
2.4GHz Intel® Atom® processor

OpenZFS ensures data integrity

A 4-bay or 8-bay desktop storage array that scales
to 48TB and packs a wallop

Intel, the Intel logo, Intel Inside, Intel Inside logo, Intel Atom, and Intel Atom Inside are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

IXSYSTEMS DELIVERS A FLASH ARRAY
FOR UNDER $10,000.

Introducing FreeNAS® Certified Flash: A high performance all-
flash array at the cost of spinning disk.

The all-flash datacenter is now within reach. Deploy a FreeNAS Certified Flash array
today from iXsystems and take advantage of all the benefits flash delivers.

IS AFFORDABLE
FLASH STORAGE
OUT OF REACH?

DON’T DEPEND
ON CONSUMER-
GRADE STORAGE.

NOT ANYMORE! KEEP YOUR DATA SAFE!

USE AN ENTERPRISE-GRADE STORAGE
SYSTEM FROM IXSYSTEMS INSTEAD.

The FreeNAS Mini: Plug it in and boot it up — it just works.

And really — why would you trust storage from anyone else?

Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/Freenas-Mini or purchase on Amazon.Call or click today! 1-855-GREP-4-IX (US) | 1-408-943-4100 (Non-US) | www.iXsystems.com/FreeNAS-certified-servers

Copyright © 2017 iXsystems. FreeNAS is a registered trademark of iXsystems, Inc. All rights reserved.

Unifies NAS, SAN, and object storage to support
multiple workloads

Runs FreeNAS, the world’s #1 software-defined
storage solution

Performance-oriented design provides maximum
throughput/IOPs and lowest latency

OpenZFS ensures data integrity

Perfectly suited for Virtualization, Databases,
Analytics, HPC, and M&E

10TB of all-flash storage for less than $10,000

Maximizes ROI via high-density SSD technology
and inline data reduction

Scales to 100TB in a 2U form factor

Editor’s Word

Dear Readers,

Tomorrow, June 1, 2018 marks a special day in Poland. It is Children’s Day, which is celebrated in 86
countries worldwide at different times of the year. As we dedicate our time and energy to our little ones,
I hope that the day adds more bliss and joyfulness to your life. Happy Children's Day!

Let’s see what we have in this issue. For FreeBSD and NetBSD fans, we have two practical articles for
you: one written by Abdorrahman Homaei and the second one by David Carlier. The first article,
Practical ZFS On FreeBSD, will show you how amazing ZFS is. You will learn about ZFS design goals,
how to enable ZFS on FreeBSD, and how to create your first ZFS Pool. You will also read about RaidZ,
Snapshot and Rollback, and about Zpool Status. Additionally, you will learn how to share ZFS with NFS
and how to monitor ZFS storage. The second article is about LLVM and Sanitizers. Don’t feel left out if
you are using a BSD OS other than FreeBSD. This article will also cover NetBSD, too. You will learn that
LLVM provides the frontends and various tools, and the different types of sanitizers to help you with
debugging applications. Moreover, we have published the first module of the Device Driver
Development so I highly encourage you to enroll in this course and learn more from Rafael, the course
instructor. For our Self Exposure section, Joel Carnat, an amazing blog creator, discusses how to
monitor OpenBSD using Grafana, InfluxDB, and CollectD packages. Lastly, does our data lie safely with
large Social Media corporations, and is data privacy a call for concern? Find the answer to these and
more as you internalize Rob’s column. Lastly, does our data lie largely with Social Media corporations
and is data privacy a call for concern? Find the answer to these and more as you internalize Rob's
column. Can corporations take steps to combat Unconscious Bias while interpreting such data?
E.G.Nadhan expands on this in Expert Speak.

 
See you next time, and enjoy the issue! 
Ewa & The BSD Team 

P.S. Send me an email at ewa@bsdmag.org if you would like more information or would like to share
your thoughts.

4

mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org

In Brief

In Brief 
Ewa & The BSD Team 08 
This column presents the latest coverage of breaking news, events, product releases, and trending
topics from the BSD sector.

FreeBSD

Practical ZFS On FreeBSD 14 
Abdorrahman Homaei 
ZFS is an advanced file system that was originally developed by Sun. It combines the roles of volume
manager and file system to realize unique advantages. ZFS is aware of the underlying structure of the
disks. It can detect low-level interrupt and provide RAID mechanism. ZFS is also capable of sharing its
volume separately. ZFS’s awareness of the physical layout of the disks lets you grow your storage
without any hassle. Additionally, it has different properties that can be applied to each file system,
giving many advantages of creating a number of different file systems and datasets rather than a single
monolithic file system.

BSD

LLVM and Sanitizers in BSD 18 
David Carlier 
LLVM and clang frontend is available on various BSD as the main compiler for FreeBSD x86, ppc, and
arm since the 10.x (was fully optional in the previous 9.x branch), OpenBSD x86 and arm since 6.2,
NetBSD x86, arm, ppc, and sparc64. LLVM provides the frontends and various tools, and there are
different types of sanitizers to help with debugging applications.

Device Driver Development

C Programming, UNIX and Main Data Structures 28 
Rafael Santiago de Souza Netto 
Nowadays, UNIX stands more as a model for an operating system to follow than as an operating
system implementation. In the beginning, UNIX as a software was originally written at Bell Labs by two
famous developers, Kenneth Thompson and Dennis Ritchie.

Self Exposure 
 
Monitoring OpenBSD using CollectD, InfluxDB, and Grafana 36 
Joel Carnat 
www.tumfatig.net  
In a “get pretty graphs” mood, I’m looking at what can be done regarding OpenBSD monitoring using

5

Table of Contents

http://www.tumfatig.net
http://www.tumfatig.net
http://www.tumfatig.net
http://www.tumfatig.net

the CollectD collector and Grafana dashboard
renderer. OpenBSD 6.2-current provides InfluxDB and
Grafana packages, a great stack for pretty reportings.

Expert Speak by E.G. Nadhan 
 
From Unconscious Bias to Unbiased
Consciousness 42 
E.G. Nadhan 
A member of the audience attending a panel session
on Unconscious Bias accidentally referred to the
topic as Unbiased Consciousness. Perhaps, it was no
accident and was a sublime message instead about
the world to come – a world where we are
consciously unbiased rather than being
unconsciously biased. However, this utopian world
can become real only if proactive actions are taken to
combat such mindsets that may not be in our control.

Column

With Facebook attempting to slam the privacy
stable door well after the horse has bolted, the
corporate giant has suspended over 200
applications which snarfed large amounts of
profile data. What does the future hold for this
global platform? 46  
Rob Somerville 
I have a certain degree of sympathy for Mark
Zuckerberg after being hauled before Congress in
light of the Cambridge Analytica fiasco. Inevitably,
any cutting-edge technology will eventually feel the
hot breath of the establishment breathing down on it,
be it via indirect legislation or as in the case of Mark
Zuckerberg, in a personal appearance before “the
powers that be” to give account. 

6

Editor in Chief:

Ewa Dudzic  
ewa@bsdmag.org  
www.bsdmag.org

Contributing:

Sanel Zukan, Luca Ferrari, José B. Alós, Carlos Klop,
Eduardo Lavaque, Jean-Baptiste Boric, Rafael Santiago,

Andrey Ferriyan, Natalia Portillo, E.G Nadhan, Daniel
Cialdella Converti, Vitaly Repin, Henrik Nyh, Renan Dias,

Rob Somerville, Hubert Feyrer, Kalin Staykov, Manuel
Daza, Abdorrahman Homaei, Amit Chugh, Mohamed

Farag, Bob Cromwell, David Rodriguez, Carlos Antonio
Neira Bustos, Antonio Francesco Gentile, Randy Remirez,

Vishal Lambe, Mikhail Zakharov, Pedro Giffuni, David
Carlier, Albert Hui, Marcus Shmitt, Aryeh Friedman

Top Betatesters & Proofreaders:

Daniel Cialdella Converti, Eric De La Cruz Lugo, Daniel
LaFlamme, Steven Wierckx, Denise Ebery, Eric Geissinger,
Luca Ferrari, Imad Soltani, Olaoluwa Omokanwaye, Radjis

Mahangoe, Katherine Dizon, Natalie Fahey, and Mark
VonFange.

Special Thanks:

Denise Ebery 
Katherine Dizon

Senior Consultant/Publisher: Paweł Marciniak

Publisher: Hakin9 Media SK,  
02-676 Warsaw, Poland Postepu 17D, Poland 

 worldwide publishing 
editors@bsdmag.org

Hakin9 Media SK is looking for partners from all over the
world. If you are interested in cooperation with us, please

contact us via e-mail: editors@bsdmag.org

All trademarks presented in the magazine were used only
for informative purposes. All rights to trademarks

presented in the magazine are reserved by the companies
which own them.

mailto:ewa@bsdmag.org
mailto:ewa@bsdmag.org
http://www.bsdmag.org
http://www.bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org
mailto:editors@bsdmag.org

7

In Brief

Visualizing ZFS Performance
Many tools exist to understand ZFS performance challenges and opportunities, but a single table by
renowned performance engineer Brendan Gregg will teach you to visualize the relationship between
each tier of storage devices when architecting your TrueNAS or FreeNAS system.

Brendan Gregg worked closely with the ZFS Team at Sun Microsystems and later wrote the definitive
book on Unix systems performance, Systems Performance. In the book, Brendan examines dozens of
powerful performance analysis tools from top(1) to DTrace and plots his results with flame graphs to
help establish baseline performance and pinpoint anomalies. I can’t recommend the book enough and
want to talk about a single chart in it that you might overlook. In the “Example Time Scale of System
Latencies” on page 20, Brendan maps the latency of one CPU cycle to one second of time, and
continues this mapping down through 14 more example elements of the computing stack. The resulting
relative time scale ranges from one second for a CPU cycle to 32 millennia for a server to reboot. The
four essential points in Brendan’s scale for ZFS administrators are:

This deceptively simple chart provides the majority of what you need to understand ZFS performance
challenges and opportunities. Newer flash-based storage devices like the NVDIMM and NVMe devices
found in the new TrueNAS M-Series bridge the gap between SSDs and system RAM but the distinct
performance tiers remain the same. Let’s break them down:

One CPU Cycle

A CPU cycle is the one fixed point of reference for the performance of any given system, and most
TrueNAS and FreeNAS systems maintain a surplus of CPU power. The operating system and services
are the obvious primary consumers of this resource, but a ZFS-based storage system makes effective
use of CPU resources in less obvious ways: checksumming, compressing, decompressing, and

8

https://twitter.com/brendangregg
https://twitter.com/brendangregg
http://www.brendangregg.com/sysperfbook.html
http://www.brendangregg.com/sysperfbook.html
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html
https://www.ixsystems.com/truenas/
https://www.ixsystems.com/truenas/

encrypting data. The data integrity guarantee made by ZFS is only possible thanks to a modern CPU’s
ability to calculate and validate data block checksums on the fly, a luxury not available on previous
generations of systems. The CPU is also used for continuously compressing and decompressing data,
reducing the burden on storage devices and yielding a performance gain.

Encryption performed by the CPU typically takes the form of SSH for network transfers or on-disk data
block encryption. Faster SSH encryption improves network performance during replication transfers
while data encryption can place an equal, if not greater burden on the storage system than
compression. In all cases, CPU-based acceleration of compression, decompression, and encryption
allows storage devices to perform at their best thanks to the optimization of the data provided to them.

Main RAM Access

Like the CPU, computer memory is not only used by the operating system and services, but it also
provides a volatile form of storage that plays a key role in ZFS performance. Computer RAM is
considered volatile because its contents are lost when the computer is switched off. While RAM
performs slower than the CPU, it is also faster than all forms of persistent storage. ZFS uses RAM for
its Adaptive Replacement Cache (ARC), which is essentially an intelligent read cache. Any data residing
in the ARC, and thus RAM, is available faster than any persistent storage device can provide, at any
cost. While ZFS is famous for aggressively using RAM, it is doing so for a good reason. Investing in
RAM can be the greatest investment you can make for read performance.

SSD Storage Access

Sitting squarely between RAM and spinning disks in terms of performance are SSDs, now joined by the
yet-faster NVMe cards and memory-class devices like NVDIMMs. Flash-based devices introduce
persistent storage but generally pale in comparison to RAM for raw speed. With these stark differences
in performance come stark differences in capacity and price, enlightening us to the fact that a
high-performance yet cost-competitive storage stack is a compromise made of several types of
storage devices. This has been termed “hybrid” storage by the industry. In practice, SSDs are the only
practical foundation for an “all-flash array” for the majority of users and, like the ARC, they can also
supplement slower storage devices. An SSD or NVMe card is often used for a ZFS separate log device,
or SLOG, to boost the performance of synchronized writes, such as over NFS or with a database. The
result is “all-flash” write performance and the data is quickly offloaded to spinning disks to take
advantage of their capacity. Because this offloading takes place every five seconds by default, a little
bit of SLOG storage goes a long way.

On the read side, a level two ARC, or L2ARC, is typically an SSD or NVMe-based read cache that can
easily be larger than computer memory of the same price. Serving data from a flash device will clearly
be faster than from a spinning disk, but slower than from RAM. Note that using an L2ARC does not
mean you cut back on your computer memory too dramatically because the L2ARC index along with
various ZFS metadata are still kept in RAM.

Rotational Disk Access

Finally, we reach the spinning disk. While high in capacity, disks are astonishingly slow in performance
when compared to persistent and volatile flash and RAM-based storage. It is tempting to scoff at the
relative performance of hard disks, but their low cost per terabyte guarantees their role as the heavy

9

lifters of the storage industry for the foreseeable future. Stanley Kubrick’s HAL 9000 computer in the
movie 2001 correctly predicted that the future of storage is a bunch of adjacent chips, but we are a
long way from that era. Understanding the relative performance of RAM, flash, and rotating disks will
help you choose the right storage components for your ZFS storage array. The highly-knowledgeable
sales team at iXsystems is here to help you quickly turn all of this theory into a budget for the storage
system you need.

Michael Dexter

Senior Analyst

Source: https://www.ixsystems.com/blog/

BSDCan - The BSD Conference
BSDCan, a BSD conference held in Ottawa, Canada, quickly established itself as the technical
conference for people working on and with 4.4BSD based operating systems and related projects. The
organizers have found a fantastic formula that appeals to a wide range of people from extreme novices
to advanced developers. 
Tutorials: 6-7 June 2018 (Wed/Thu) 
Conference: 8-9 June 2018 (Fri/Sat) 
Location 
University of Ottawa, in the DMS (Desmarais) building.

 

Source: https://www.bsdcan.org/2018/

EuroBSDcon 2018
University Politehnica of Bucharest, Bucharest, Romania 
20 - 23 September, 2018 
EuroBSDcon is the European annual technical conference gathering users and developers working on
and with 4.4BSD (Berkeley Software Distribution) based operating systems family and related projects.
EuroBSDcon gives the exceptional opportunity to learn about latest news from the BSD world, witness
contemporary deployment case studies, and meet personally other users and companies using BSD
oriented technologies. EuroBSDcon is also a boilerplate for ideas, discussions and information
exchange, which often turn into programming projects. The conference has always attracted active
programmers, administrators and aspiring students, as well as IT companies at large, which found the
conference a convenient and quality training option for its staff. We firmly believe that high profile

10

https://www.ixsystems.com/blog/
https://www.ixsystems.com/blog/
https://www.bsdcan.org/2018/
https://www.bsdcan.org/2018/

education is vital to the future of technology, and hence greatly welcome students and young people to
this regular meeting.

Source: https://2018.eurobsdcon.org/

pfSense 2.4.3-RELEASE-p1 and 2.3.5-RELEASE-p2
Available
  
The release of pfSense® software versions 2.4.3-p1 and 2.3.5-p2, now available for upgrades! 
pfSense software versions 2.4.3-p1 and 2.3.5-p2 are maintenance releases bringing security patches
and stability fixes for issues present in the pfSense 2.4.3 and 2.3.5-p1 releases. 
This release includes several important security patches, including the issues discussed last week: 

FreeBSD Security Advisory for CVE-2018-8897

FreeBSD-SA-18:06.debugreg

FreeBSD Errata Notice for CVE-2018-6920 and CVE-2018-6921

FreeBSD-EN-18:05.mem

Fixed a potential LFI in pkg_mgr_install.php #8485 pfSense-SA-18_04.webgui

Fixed a potential XSS in pkg_mgr_install.php #8486 pfSense-SA-18_05.webgui

Fixed a potential XSS vector in RRD error output encoding #8269 pfSense-SA-18_01.packages

Fixed a potential XSS vector in diag_system_activity.php output encoding #8300
pfSense-SA-18_02.webgui

Changed sshd to use delayed compression #8245

Added encoding for firewall schedule range descriptions #8259

Aside from security updates, the new versions include a handful of beneficial bug fixes for various
minor issues. 

11

https://2018.eurobsdcon.org/
https://2018.eurobsdcon.org/

Upgrading to pfSense 2.3.5-RELEASE-p2 

Updating from an earlier pfSense 2.3.x release to pfSense 2.3.5-p2 on an amd64 installation that could
otherwise use pfSense 2.4.x requires configuring the firewall to stay on pfSense 2.3.x releases as
follows: 
 
Navigate to System > Update, Update Settings tab 
Set Branch to Legacy stable version (Security / Errata Only 2.3.x) 
Navigate back to the Update tab to see the latest pfSense 2.3.x update 
The same change is required to see pfSense 2.3.x packages for users staying on pfSense 2.3.x. 
Firewalls running 32-bit (i386) installations of pfSense software do not need to take any special actions
to remain on 2.3.x as they are unable to run later versions. 
 
Update Troubleshooting 

If the update system offers an upgrade to pfSense but the upgrade does not proceed, ensure that the
firewall is set to the correct update branch as mentioned above. If the firewall is on the correct branch,
refresh the repository configuration and upgrade the script by running the following commands from
the console or shell: 
pkg-static clean -ay; pkg-static install -fy pkg pfSense-repo pfSense-upgrade 
In some cases, the repository information may need to be rewritten. This can be accomplished by
switching to a development branch, checking for updates, and then switching back to the appropriate
branch and checking for updates again. 
 
Reporting Issues 

This release is ready for a production use. Should any issues come up with pfSense 2.4.3-RELEASE-p1
or 2.3.5-RELEASE-p2, please post about them on the the forum, the mailing list, or on the /r/pfSense
subreddit. 

Source:
https://www.netgate.com/blog/pfsense-2-4-3-release-p1-and-2-3-5-release-p2-now-available.html

12

https://www.netgate.com/blog/pfsense-2-4-3-release-p1-and-2-3-5-release-p2-now-available.html
https://www.netgate.com/blog/pfsense-2-4-3-release-p1-and-2-3-5-release-p2-now-available.html

13

FreeBSD

What Is ZFS?

ZFS is an advanced file system that originally
developed by Sun. ZFS Combining the roles of
volume manager and file system with unique
advantages. ZFS is aware of the underlying
structure of the disks and can detect low-level
interrupt and provides RAID mechanism. ZFS is
capable of share its volume separately. ZFS's
awareness of the physical layout of the disks let
you grow your storage without any hassle. ZFS
also has a number of different properties that
can be applied to each file system, giving many
advantages to creating a number of different file

systems and datasets rather than a single
monolithic file system.

Lately, ZFS development has moved to the
OpenZFS Project.

ZFS Design Goals

ZFS has three major design goals:

• Data integrity: All data includes a checksum of
the data. When data is written, the checksum
is calculated and written along with it. When
that data is later read back, the checksum is
calculated again. If the checksums do not

14

Practical ZFS On
FreeBSD
What Is ZFS?

ZFS Design Goals

How to Enable ZFS On FreeBSD	

How to Create First ZFS Pool

RaidZ, Snapshot, and Rollback

Zpool Status

Hot Spares

Share ZFS With NFS	

Monitoring ZFS Storage	

match, a data error has been detected. ZFS
will attempt to automatically correct errors
when data redundancy is available.

• Pooled storage: physical storage devices are
added to a pool, and storage space is
allocated from that shared pool. Space is
available to all file system and can be
increased by adding new storage devices to
the pool. 

• Performance: multiple caching mechanisms
provide increased performance. ARC is an
advanced memory-based read cache. The
second level of disk-based read cache can be
added with L2ARC, and disk-based
synchronous write cache is available with ZIL. 

Enable ZFS On FreeBSD

FreeBSD supports ZFS natively and all you need
to do is to add this line to “/etc/rc.conf”
manually:

 zfs_enable="YES"

Or with:

echo 'zfs_enable="YES"' >> /etc/rc.conf

Then start the service:

service zfs start

A minimum of 4GB of RAM is required for com-
fortable usage, but individual workloads can vary
widely.

Create First ZFS Pool

ZFS can work directly with device node but you
can also create your own disk with truncate:

truncate -s 2G disk_1

truncate -s 2G disk_2

truncate -s 2G disk_3

truncate -s 2G disk_4

Then create your own pool and name it storage:

zpool create storage /root/disk_1
/root/disk_2 /root/disk_3 /root/disk_4

zpool list

As you can see we have 7.94G storage. This
pool is not taking advantage of any ZFS features.
To create a dataset on this pool with
compression enabled:

Compression Property

zfs create storage/myfolder

zfs set compression=gzip storage/myfolder

It is now possible to see the data and space
utilization by issuing df:

storage 7.7G 23K 7.7G
0% /storage

storage/myfolder 7.7G 23K 7.7G
0% /storage/myfolder

you can disable compression by:

zfs set compression=off storage/myfolder

Copies Property

If you have something important you can keep
more copies of it:

zfs create storage/archive

zfs set copies=2 storage/archive

To destroy the file systems and then destroy the
pool as it is no longer needed:

zfs destroy storage/myfolder

zfs destroy storage/archive

zpool destroy storage

zpool set autoexpand=on mypool

15

RaidZ, Snapshot, and Rollback

A variation on RAID-5 that allows for better
distribution of parity and eliminates the "RAID-5"
write hole (in which data and parity become
inconsistent after a power loss). Data and parity
are striped across all disks within a raidz group.

Try creating a file system snapshot which can be
rolled back later:

zfs snapshot storage/myfolder@now

You can restore to the created snapshot with:

zfs rollback storage/myfolder@now

Also, you can list all ZFS datasets and
snapshots:

zfs list -t all

Zpool Status

A pool's health status is described by one of
three states:

• online (all devices operating normally)

• degraded (one or more devices have failed, but
the data is still available due to a redundant
configuration)

• faulted (corrupted metadata, or one or more
faulted devices, and insufficient replicas to
continue functioning)

You can get pool status by:

zpool status

Hot Spares

ZFS allows devices to be associated with pools
as "hot spares". These devices are not actively
used in the pool, but when an active device fails,
it is automatically replaced by a hot spare. To
create a pool with hot spares, specify a "spare"
vdev with any number of devices.

In the example, we have raidz consist of 4 disks
and 1 backup disk.

zpool create storage raidz /root/disk_1
/root/disk_2 /root/disk_3 /root/disk_4
spare /root/disk_5

Share ZFS With NFS

ZFS supports NFS natively and you can share
pools in a network.

Add these lines to “/etc/rc.conf”:

rpcbind_enable="YES"

mountd_flags="-n"

nfs_server_enable="YES"

mountd_enable="YES"

Then issue this command:

zfs set sharenfs=on storage/myfolder

showmount command will list NFS export
list:

showmount -e

Monitoring ZFS Storage

With ZFS built-in monitoring system you can
view pool I/O statistics in real time. It shows the
amount of free and used space in the pool, read
and write operations per second and I/O band-
width.

By issuing this command status will be shown
every 1 second:

16

zpool iostat 1

Conclusion

ZFS Combining the roles of volume manager and
file system with unique advantages. It's aware of
the underlying structure of the disks and can
detect low-level interrupt and provides RAID
mechanism.

Useful Links

https://www.freebsd.org/doc/handbook/zfs.html

https://docs.oracle.com/cd/E23824_01/html/821-1
448/gayne.html

https://blogs.oracle.com/roch/nfs-and-zfs,-a-fine-c
ombination

https://www.freebsd.org/doc/handbook/zfs-term.ht
ml

https://www.freebsd.org/doc/handbook/zfs-zpool.
html

https://www.freebsd.org/doc/en/books/faq/all-abo
ut-zfs.html

Meet the Author

Abdorrahman Homaei has been working as a
software developer since 2000. He has used
FreeBSD for more than ten years. He became
involved with the meetBSD dot ir and performed
serious training on FreeBSD. He started his own
company (etesal amne sara Tehran) in Feb, 2017.
His company based in Iran silicon valley. 

Full CV: http://in4bsd.com

His company: http://corebox.ir

17

https://www.freebsd.org/doc/handbook/zfs.html
https://www.freebsd.org/doc/handbook/zfs.html
https://docs.oracle.com/cd/E23824_01/html/821-1448/gayne.html
https://docs.oracle.com/cd/E23824_01/html/821-1448/gayne.html
https://docs.oracle.com/cd/E23824_01/html/821-1448/gayne.html
https://docs.oracle.com/cd/E23824_01/html/821-1448/gayne.html
https://blogs.oracle.com/roch/nfs-and-zfs,-a-fine-combination
https://blogs.oracle.com/roch/nfs-and-zfs,-a-fine-combination
https://blogs.oracle.com/roch/nfs-and-zfs,-a-fine-combination
https://blogs.oracle.com/roch/nfs-and-zfs,-a-fine-combination
https://www.freebsd.org/doc/handbook/zfs-term.html
https://www.freebsd.org/doc/handbook/zfs-term.html
https://www.freebsd.org/doc/handbook/zfs-term.html
https://www.freebsd.org/doc/handbook/zfs-term.html
https://www.freebsd.org/doc/handbook/zfs-zpool.html
https://www.freebsd.org/doc/handbook/zfs-zpool.html
https://www.freebsd.org/doc/handbook/zfs-zpool.html
https://www.freebsd.org/doc/handbook/zfs-zpool.html
https://www.freebsd.org/doc/en/books/faq/all-about-zfs.html
https://www.freebsd.org/doc/en/books/faq/all-about-zfs.html
https://www.freebsd.org/doc/en/books/faq/all-about-zfs.html
https://www.freebsd.org/doc/en/books/faq/all-about-zfs.html
http://in4bsd.com
http://in4bsd.com
http://corebox.ir
http://corebox.ir

BSD

LLVM is mainly used via its frontends to generate
LLVM bytecode, which is eventually compiled to
native binary format. It also comes with
(optional) a set of tools from static code analysis,
code formatter (clang-format), LLVM IR
“interpreter” (lli), LLVM bytecode quality
measuring (llvm-mca) to the sanitizers suite (a

subset of is used by gcc), which we are going to
focus in this article.

The sanitizers are capable of detecting bugs at
runtime that are not predictable when compiling.
What if a buffer has a constant size but the

18

LLVM and Sanitizers
in BSD
LLVM and clang frontend is available on various BSD as the main compiler for FreeBSD
x86, ppc and arm since the 10.x (fully was optional in the previous 9.x branch), OpenBSD
x86 and arm since 6.2, NetBSD x86, arm, ppc and sparc64. LLVM provides the frontends
and various tools, and on the other side of the spectrum, there are different types of
sanitizers to help with debugging applications.

What you will learn:

What are the available sanitizers and tools

Their various availability and working state for each BSD.

What you need to know:

Basic knowledge of LLVM usage with any frontend

Experience in debugging with language using LLVM infrastructure

program allows writing from user entry without
size checking?

Address Sanitizer

This sanitizer (aka asan) detects memory usage
error at run-time, dangling pointers usage or
buffer boundaries issues to summarize. The flag
to pass is `-fsanitize=address`.

For a basic example:

#include <string.h>

int main(void)

{

 char p[5] = {};

 strcpy(p, "12345");

 return 0;

}

The above code will generate the report which is
shown on Figure 1.

We can see the fifth character, ‘5’ out of the
boundaries.

And this code:

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

void test(char **ptr)

{

19

Figure 1. The report

 char *p = malloc(5);

 strcpy(p, "abcd");

 free(p);

 *ptr = p;

}

int main(void)

{

 char *p;

 test(&p);

 printf("%s\n", p);

 return 0;

}

gives the output which can be seen on Figure 2.

Where, we see the attempt to use the 5 bytes
allocated and freed earlier

Supported by: FreeBSD and NetBSD

Memory Sanitizer

This sanitizer (aka msan) is mainly used to detect
uninitialized values when attempted to be used.

For example: this code

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv)

{

 int *arr = (int *)malloc(sizeof(*arr) *
10);

20

Figure 2. The output

 arr[5] = 0;

 if (arr[argc])

 printf("%d\n", arr[argc]);

 free(arr);

 return 0;

}

will give an output (see Figure 3) highlighting the
use of the uninitialized array item.

Supported by: FreeBSD (from clang 7) and
NetBSD

Thread Sanitizer

This sanitizer (aka tsan) is mainly used to detect
race conditions in multi-thread context, which is
a usually quite edgy sort of bugs to solve. The
impact in terms of performance is more
noticeable than the rest of the sanitizers.
However, it’s delicate to use it in production
code.

#include <pthread.h>

#include <stdio.h>

static int a = 12;

void *changeA(void *arg)

{

 a = *((int *)arg);

 printf("a is %d\n", a);

 return 0;

}

int main(int argc, char **argv)

{

 pthread_t pt[2];

 int c1 = 13;

 int c2 = 11;

 pthread_create(&pt[0], NULL, changeA,
(void *)&c1);

 pthread_create(&pt[1], NULL, changeA,
(void *)&c2);

 pthread_join(pt[1], NULL);

 pthread_join(pt[0], NULL);

 return 0;

}

21

Figure 3. The use of the uninitialized array

Again, this code would not cause visible issue.
But with the sanitizer instrumentation, the data
race with the global is detected. See Figure 4.

Supported by: FreeBSD and NetBSD

Undefined Behavior Sanitizer

The role of the Undefined Behavior Sanitizer (aka
ubsan) is to detect subtle undefined behavior
bugs as integer overflow, division by zero, and
invalid bit shift operations (a typical case with
signed types trying to shift bits as it was
unsigned). Ubsan is often used in conjunction
with other sanitizers like asan, msan or tsan.

For example, let’s try a classic integer overflow:

#include <string.h>

int main(int argc, char *argv[])

{

 int r = 1 << 32;

 return 0;

}

22

Figure 4. The data race with the global

Which will give the following output with this
generic flag `-fsanitize=undefined`. See Figure 5.
Since it’s not a dynamic value, modern compilers
can detect such overflow. Another example of
ubsan usage, for C++ only, is to check if the
internal pointer to vtable of a given instance
class really points to the right function pointers.
For example, with the flag `-fsanitize=vptr`, this
code which would not trigger any apparent fault
in a normal situation,

#include <string>

class A {

 char m[5];

 virtual void virt() = 0;

public:

 char *getM() { return m; }

};

class B : public A {

 int i;

 void virt() { i = 0; }

public:

 int getI() { return i; }

};

int main(void)

{

 unsigned char *p = new unsigned
char[sizeof(B)];

 B *pB = (B *)p;

 pB->getM();

 pB->getI();

 delete [] p;

 return 0;

}

will display the following output, where the
allocated pointer is not a proper B class
instance. See Figure 6.

23

Figure 5. The output with this generic flag `-fsanitize=undefined`

Figure 6. The output, where the allocated pointer is not a proper B class instance

Supported by: FreeBSD, OpenBSD (from clang
7) and NetBSD

Leak Sanitizer

As its name suggests, it detects
memory/resource leaks.

Supported by: At the moment, only a NetBSD
support is planned by the NetBSD foundation.

SafeStack

Safestacks protects the software against stack
overflows without a noticeable performance hit.
It is more useful for systems without such
protection originally.

The flag to pass in order to enable it is:

`-fsanitize=safe-stack`

Therefore, a simple program that would function
somehow in normal conditions

#include <string.h>

int main(int argc, char *argv[])

{

 char p[3];

 strcpy(p, "abcdefghi");

 return 0;

}

will simply provoke a segmentation fault.

Supported by: FreeBSD and NetBSD

X-ray instrumentation

This feature allows getting accurate function call
tracing, giving the opportunity to inspect the
bottlenecks without significant performance
impact, and allowing itself to be used in
production simultaneously.

With this code, we can use attributes to define
instrumented or not instrumented functions to
check, for example, the ones that are
suspiciously the bottlenecks in terms of
performance, and the ones we are sure are not.

#include <unistd.h>

static int global = 0;

void always_instrument(int)
__attribute__((xray_always_instrument));

void never_instrument(int)
__attribute__((xray_never_instrument));

void reset()
__attribute__((xray_never_instrument));

void always_instrument(int i)

{

 global += i;

 sleep(3);

}

void never_instrument(int i)

{

 global += i;

 sleep(3);

}

24

void reset()

{

 global = 0;

}

int main()

{

 for (int i = 0; i < 3; i ++) {

 always_instrument(i);

 never_instrument(i);

 }

 reset();

 return 0;

}

Here, we generate the trace of our application to
check which part of the code count in the total

spent (by default, the trace is not generated).
See Figure 7.

Since our never_instrumented and reset
functions are not instrumented on purpose, the
delta with main (instrumented by default)
appears clearly. See Figure 8.

Supported by: FreeBSD (from clang 7),
OpenBSD (from clang 7), and NetBSD

Fuzzer

Fuzzing, in general, is a very useful software
testing technique based on giving random data
(called corpus) to the software or library in
question.

In the LLVM standpoint, there is a possibility to
build a binary to be used for fuzzing. First, we
need to define the LLVMTestFuzzerOneInput C
function (`main` entry point is already defined) as:

int LLVMTEstFuzzerOneInput(uint8_t *input,
size_t inputlen)

{

 <exploiting input>

 return 0;

}

25

Figure 7. The trace is not generated

Figure 8. The delta with main (instrumented by default) appears clearly

Usually, libFuzzer is used in conjunction with a
sanitizer to spot possible bugs, the ones we
mentioned earlier, in the process. Therefore, as
libFuzzer, ubsan, msan, asan and tsan support
parallel jobs.

#include <sys/types.h>

#include <string.h>

#include <stdint.h>

void myLibraryCall(const char *);

extern "C" int
LLVMFuzzerTestOneInput(const uint8_t
*input, size_t inputlen)

{

 myLibraryCall((const char *)input);

 return 0;

}

26

Figure 9. A corpus data containing an element to trigger the buffer overflow

Figure 10. A corpus data containing an element to trigger the buffer overflow

void myLibraryCall(const char *data)

{

 static char buf[8];

 strcpy(buf, data);

}

Let’s compile this with these flags
`-fsanitize=fuzzer,address`

So we have a corpus data containing an element
to trigger the buffer overflow. See Figure 9 and
10.

Supported by: FreeBSD (from clang 7),
OpenBSD (from clang 7) and NetBSD

Development

Various FreeBSD developers/contributors had
done most of the work for FreeBSD. I personally
ported libFuzzer, msan, and X-Ray
instrumentation.

For NetBSD, mainly kamil from the NetBSD
foundation.

For OpenBSD, I ported ubsan, libFuzzer, and
X-ray instrumentation.

Conclusion

The sanitizers are definitely useful within a
developer’s toolset, whether it’s for professional
purpose or as BSD contribution to detecting
subtle bugs exhaustively in the userland. The
support varies; while the BSD, NetBSD, and
FreeBSD support most of the features,
OpenBSD only supports a subset of the features,
but always under active development.

References

https://llvm.org/docs/GettingStarted.html

https://blog.netbsd.org/tnf/entry/the_llvm_sanitiz
ers_stage_accomplished

Meet the Author

David Carlier is an experienced developer and
used to handle some languages like C/C++, Java,
Python with Linux, *BSD and Win32 Operating
Systems and worked inside startups and bigger
companies as well. Personally a big fan of
FreeBSD and OpenBSD. C/C++ are his preferred
programming language most of the time. He
writes and reviews articles for BSDMag
http://www.bsdmag.org. He contributes
modestly to OpenBSD ports and time in time to
the source. 
He has been interviewed by BSDNow show
http://www.bsdnow.tv/episodes/2017_10_18-soft
ware_is_storytelling. Also He did some small
contributions for FreeBSD and DragonflyBSD
operating system.

27

https://llvm.org/docs/GettingStarted.html
https://llvm.org/docs/GettingStarted.html
https://blog.netbsd.org/tnf/entry/the_llvm_sanitizers_stage_accomplished
https://blog.netbsd.org/tnf/entry/the_llvm_sanitizers_stage_accomplished
https://blog.netbsd.org/tnf/entry/the_llvm_sanitizers_stage_accomplished
https://blog.netbsd.org/tnf/entry/the_llvm_sanitizers_stage_accomplished
http://www.bsdmag.org
http://www.bsdmag.org

Device Driver Development

In 1963, Bell Labs and others companies joined
to create a new operating system with the
following requirements:

• Multi-user

• Be multi-tasking

• Be capable of storing and sharing data and
programs on a large scale

• Allow data sharing among users and groups

This project/system was called MULTICS. It was
developed on a GE-645 but in 1969, MULTICS

28

C Programming, UNIX
and Main Data
Structures

Nowadays, UNIX stands more as a model for an operating system to follow rather than an
operating system implementation. In the beginning, UNIX as a software was originally written
at Bell Labs by two famous developers: Kenneth Thompson and Dennis Ritchie.

was still not a fully working operating system.
Other companies have continued the MULTICS
development but Bell Labs, not seeing much
future in this project, decided to quit.

During that time, some developers within Bell
Labs were frustrated with the decision to quit
and, started developing a simpler MULTICS
version themselves.

Actually, Kenneth Thompson was tired of trying
to play ‘Space Travel’ in MULTICS. Space Travel
was a simulation game he originally wrote for
MULTICS. However, the operating system was
not much able of well executing that game. Still
in 1969, facing the MULTICS execution
problems, Thompson decided to port Space
Travel to another unused computer in his
laboratory, a PDP-7. Having developed tons of
workarounds to make possible the game
execution, this porting effort quickly became an
entire operating system, fully written in PDP-7
assembly.

In order to convince the company managers
about how serious the project was, it was
presented as a future text editor; later, it evolved
to a general-purpose operating system, named
UNIX.

Several technologies were developed as support
for the UNIX project. The most important was the
C programming language, developed by Dennis
Ritchie.

C was developed as an evolution of Thompson’s
B language. The UNIX was totally re-written in C
and it was released as a commercial operating
system. C allowed UNIX to be developed in a
more portable way with regard to other computer
architectures. The portability introduced by the C
language was a seminal step in computing field
as a whole.

The name ‘UNIX’ is just a pun on the name
‘MULTICS’.

The features and fruits of UNIX

The interesting thing about UNIX is that its
source code was used in Operating System
classes until the code was closed by AT&T. If you
are interested in looking at the original UNIX
source code developed by Thompson & Ritchie
(UNIX V6), search for the book: “Lions’
commentary on UNIX 6th Edition – with source
code” (ISBN 1-57398-013-7). The book was
organized by professor John Lions as a study
aid for his students. The book has the complete
UNIX V6 code listing and sections where Lions
discusses all system parts, explaining the code.

Around the world, many operating system
developers have debuted in this field reading
those notes from professor Lions.

When UNIX was closed and its source code
could not be used in classes anymore, another
college professor, Andrew Stuart Tanenbaum,
decided to create the MINIX project. MINIX
would become one of the first efforts of creating
a UNIX-like operating system without the original
source code from Bell Labs. Also, one of the
most famous books about Operating Systems
widely used in many Computer Science classes
until today originated from the MINIX project.
The MINIX development is still active. Currently,
MINIX is licensed under BSD.

The first BSD versions were branches of the
original UNIX. At present, any “BSD” system can
be considered a derivative of the original UNIX
ancestor.

Linux is another famous modern UNIX-like but its
development started in 90’s, and it does not
have any code from original UNIX.

User programs can be easily ported from
UNIX-like to another. The sharing between all
those UNIX-like systems is only possible
because all of them follow an important
document called Single Unix Specification
(http://opengroup.org/unix). This document

29

summarizes what an operating system must
implement to be considered a UNIX-like.

The Single Unix Specification is composed of
three documents: ANSI C, XPG4, and POSIX.

The ANSI C is about the standard for the C
language implementation, including syntax,
libraries and other features. The XPG4 is about
standards for X server, the graphical UNIX
interface. The POSIX document lists all system
calls and signals that a UNIX-like must
implement.

How internally a UNIX-like works does not matter
for the Single Unix Specification, but how this
UNIX-like externally reacts and replies is very
important. It defines if the system can be
considered a UNIX-like or not. Due to it, maybe
POSIX could be considered the most important
document in the whole standard.

The POSIX signals and system calls

The POSIX standard defines 31 signals. Those
signals must be implemented by a UNIX-like.
Table 1 lists more details about each of them.
Signals are important because the system uses
them to manage its processes. Processes are
able to send and receive signals.

Table 1: The POSIX signals.

Portable Number Name Description
1 SIGHUP Hangup
2 SIGINT Terminal interrupt

signal
3 SIGQUIT Terminal quit

signal
- SIGILL Illegal instruction
- SIGTRAP Trace/breakpoint

trap
6 SIGABRT Process abort

signal
- SIGIOT Process abort

signal. (PDP-11)
- SIGEMT Obsolete
- SIGUNUSED Unused
9 SIGKILL Kill (can not be

ignored)
- SIGFPE Erroneous

arithmetic
operation

- SIGUSR1 User-defined
signal 1

- SIGBUS Access to an
undefined portion
of a memory
object

- SIGSEGV Invalid memory
reference

- SIGUSR2 User-defined
signal 2

- SIGPIPE Write on a pipe
with no one to
read it (broken-
pipe)

14 SIGALARM Alarm clock
15 SIGTERM Termination signal

(can be ignored)
- SIGCHLD Child process

terminated,
stopped, or
continued

- SIGCONT Continue
executing, if
stopped

- SIGSTOP Stop executing
(cannot be caught
or ignored)

- SIGTSTP Terminal stop
signal

- SIGTTIN Background
process
attempting read

- SIGTTOU Background
process
attempting write

30

Opposing to the standard signals, there are
several system calls. Some of them are related to
the file system (open, read, and write), time
utilities (gettimeoftheday), networking (send,
recv, accept), etc.

As you should see, some system call names are
used also to name functions inside the standard
C library. These C library functions are directly
related to those system calls but the standard C
library only implements the user side of them.
Being those C functions only tiny windows to the
true system calls.

A brief overview of C language

C is a powerful procedural language created by
Dennis Ritchie at Bell Labs to simplify the UNIX
development. One of the most impressing
concepts introduced by C language was the
notion of portability.

Functionalities like the unary operator “sizeof”
and the C pre-processor made the process of
porting software easier than before.

Although at first glance it was developed as
support technology for the UNIX project, the use
of C has gone beyond the UNIX frontiers and C
has been proved to be a well succeed
programming language. Even nowadays, despite
the advent of more modern and “friendly”
programming languages, there are still tons of
legacy and new software being maintained and
developed in C.

The compilation process of a C program can be
divided into 3 main phases: Pre-processing,
Compiling and Linking.

The pre-processing phase is performed by the C
pre-processor software. This program handles all
defined macro stuff and the compiler directives.

The compiling phase is managed by the C
compiler itself. It parses the source codes
seeking to verify all data. Aborting when some
lexical or syntax error are found.

The linking is done by the linker program. This
software will properly generate the executable
code.

The C language is surprisingly powerful and
compact. The basic data types include int, long,
short, char, float and double. It is also possible to
use these types with unsigned values. In this
case, the type name must be prefixed by the
reserved word “unsigned”. It is also possible to
use some extensions of some types such as
“long long”, etc.

User-defined types are also allowed, in this case,
the reserved word “typedef” is used for doing it.

One of the most powerful features in C language
is pointers. Pointers, as the name suggest,
instead of directly storing data, they indirect to
the data: it does store a memory address where
some data is in.

The memory management is all up to the
developer. For beginners, it makes C a little bit
hard. Anyway, programming in C is valuable for
any student who really wants to know how their
system works.

Since this course assumes C Programming skills
as pre-requisite, more details about the core of
the language will not be given.

Nonetheless, if you have problems with pointers,
structs, how to implement classical data
structures in C, basic flow control statements,
ANSI C functions, function pointers, or a more
advanced C macro usage, I would suggest you
study more deeply on the C language before
starting taking this course.

Main Data Structures

 
As any software, operating systems take
advantage of many data structures to store and
manipulate relevant data.

31

There two main data structures widely used:
queues and stacks.

Queues

 
Queues store data in the way its name suggests:
the current piece of data is stored after the last
stored piece of data. When some data is needed
to be removed, the older data is always removed
first. Due to this behavior, lists are also known by
the acronym FIFO (First In First Out).

Stacks

Stacks also handle data as its name suggests:
the data is stacked. When some data is
removed, the newer data is removed before the
older. This behavior is explained by the acronym
LIFO (Last In First Out).

Lists

Lists are a generalization of queues and stacks.
There are many implementations of lists: singly
linked, doubly linked. The data handling in this
kind of data structure is more loose. New data
can be added at any point in the list and the data
can be removed irrespective of its position in the
list.

Depending on the list type (singly, doubly linked),
some operations will be easier than others.
Anyway, this freedom of editing the data is
achieved by taking advantages of pointers.

Usually, a list item is composed of a data
payload and a pointer. The set of many items
pointing to other items compose the whole list.
Figure 1 illustrates the general idea of a list item.

32

Figure 1. A list item

A singly linked list item just points to its next
item. When there is no next item, the pointer is
null. Figure 2 illustrates a singly linked list.

A doubly linked list item points to its next item
but also points to its prior item. When there is no
next or prior items, the related pointers are set to
null. Figure 3 illustrates a doubly linked list.

Trees

Trees can be understood as a multi-level linked
list. In this case, the data payload of the list item
also counts with a sub-indirection used to point
to several sub-lists with the same behavior
adopted by the main list. In other words, it is just
a mirrored structure. Usually, recursive
algorithms should be implemented to handle
data in a tree structure.

How those data structures can be
expressed in C

Data structures can be expressed in C using the
reserved word “struct”. Indirections can be
implemented as pointers to the structure itself:

struct list_item {

 void *data;

 size_t data_size;

 struct list_item *next;

};

FreeBSD and NetBSD implement native utilities
for list handling. To use those utilities is
considered a best practice because the code is
stable, optimized and mitigates the insertion of
new bugs related to such basic operations.

33

Figure 2. A single linked list

Figure 3. A doubly linked list

Conclusions

UNIX initially was a commercial operating
system.

The C Language was primarily developed to
make easier UNIX ports. However, the design
behind C, which is focused on a compact
programming language specification and a
programming language that does not limit the
developer, has made the C language a good
choice for several real world software projects. C
has a large influence on many modern
programming languages too.

College teachers had been using UNIX in their
classes until the operating system had its source
code closed.

The copyright barriers imposed by Bell Labs in
70’s pushed people to create important and
amazing UNIX-like versions. Seminal books were
written and projects were created since then.
Nowadays, we have UNIX-like systems running
not only in servers but also in your beloved
smartphones, routers, IOT devices, etc. There is
no doubt that the UNIX philosophy has been a
huge success.

Even being a proprietary operating system, UNIX
shares an important standard called Single Unix
Specification. This document makes possible the
interaction of different UNIX-like families,
including the interchanging of programs and
programming libraries.

The Single Unix Specification is basically
composed of three documents: ANSI C, XPG4,
and POSIX.

As suggested by the name, the ANSI C standard
is related to the main UNIX programming
language. Due to it, the ANSI C must be followed
as much as possible when writing programs that
must run in several UNIX implementations. In this
way, portability will be easier. Even with non
UNIX-like systems, usually the operating system
has a minimal C library normally based on the

standard C library. This gives us an important tip:
code considering ANSI C from the beginning
and you will never be sorry.

XPG4 is the standard related to the X server and
graphical UNIX parts.

POSIX is perhaps the most important standard
of the three. It defines the standard signals sent
and received by the processes and the standard
system calls. Any good UNIX-like system must
be POSIX compliant.

Stacks and Queues are the most common data
structures present in computing.

Lists can be understood as a generalization of
the ideas introduced by queues and stacks.

Programmatically, a tree can be understood as a
multi-level list.

FreeBSD and NetBSD features standard utilities
for list typed data implementation.

Note

You can learn more about Device Driver Development by
joining our online course on bsdmag.org

Meet the Author

Rafael Santiago de Souza Netto is a Computer
Scientist from Brazil. He has been working as
software developer since 2000. He usually
contributes writing software for Computer
Science research groups from Brazil. He has
about 19 years of experience in C programming.
His main areas of interest are Programming,
Computer Networks, Operating Systems, UNIX
culture, Compilers, Cryptography, Information
Security and Social Coding. In his spare time he
likes to continue writing code but also articles
(talking about code) for BSD Magazine, 2600
among other publications.

34

35

Learn More & Join Us
www.bsdmag.org

http://www.bsdmag.org
http://www.bsdmag.org

Self Exposure

Monitoring OpenBSD using
CollectD, InfluxDB, and
Grafana
In a “get pretty graphs” mood, I’m looking at what can be done regarding OpenBSD
monitoring using the CollectD collector and Grafana dashboard renderer. OpenBSD
6.2-current provides InfluxDB and Grafana packages. A great stack for pretty reportings.

Host the data

System metrics will be stored in InfluxDB because it can be used as a Grafana source. The installation
and configuration is straightforward. The key thing is to enable the collectd protocol.

pkg_add influxdb  
vi /etc/influxdb/influxdb.conf  
(...)  
[[collectd]]  
 enabled = true  
 bind-address = ":25826"  
 database = "collectd"  
 retention-policy = ""  
 typesdb = "/usr/local/share/collectd"  
 
rcctl enable influxdb  
rcctl start influxdb

36

Note that this service works using UDP only. Unless I missed something at the time of writing, there is
no TCP nor TLS options available.

netstat -na | grep 25826  
udp 0 0 *.25826 *.*

Collect the data

I mostly use the CollectD as a metrics collector because it knows about OpenBSD, and can send its
data remotely. In this case, to InfluxDB, enable any required plugins. Don’t forget the network one so
that data can be sent to InfluxDB.

pkg_add collectd  
vi /etc/collectd.conf  
(...)  
<Plugin network>  
 <Server "127.0.0.1" "25826">  
 </Server>  
 ReportStats true  
</Plugin>  
 
rcctl enable collectd  
rcctl start collectd  

Render the data

New in OpenBSD 6.2-current : Grafana is available as a binary package. This will enable pretty
graphing using my prefered OS.

pkg_add grafana  
vi /etc/grafana/config.ini  
 
rcctl enable grafana  
rcctl start grafana

Browse to http://localhost:3000/ and log in using the default credentials (admin: admin). Those can be
changed this way http://docs.grafana.org/installation/configuration/#security and from the GUI.

In Grafana, add the InfluxDB source using the collectd database.

There are example dashboards available on Grafana’s website. Namely #554, #555 and #755. They will
nearly work out-of-the-box and can be used as a base to create yours. They seem to be Linux-centric
but here’s how they look, once slightly modified for OpenBSD.

37

http://docs.grafana.org/installation/configuration/#security
http://docs.grafana.org/installation/configuration/#security

I’ve created one from scratch to render default collecting data from my OpenBSD servers. It looks like
this :

38

Should you want to use it, I have made it available online here.

That’s All Folks!

MEET JOEL CARNAT
Please tell us about about yourself?

I am a 42 years old techie, and a far as I can remember, there’s always been a computer at home. I
started using a Thomson MO5 when I was about 10. Then, we had a Macintosh 128K and a SMT
Goupil G5. Thereafter, we had various 80386, 80486DX2, and Pentium machines running on either DOS
or Windows OS. I don’t remember precisely but in the early 1990’s, my father brought me a book about
UNIX, which shipped CDs with Slackware Linux on it. Then he brought a magazine with a CD of
FreeBSD. And I was attracted by the shell. I have worked as a System Engineer since 1998, sometimes
as an employee, sometimes as an IT consultant. Since 2008, I evolved a bit and served as an IT
Architect for various clients. As of 2015, a friend and I started our own company. We’re helping our
clients to make the most of their IT systems.

39

https://grafana.com/dashboards/4775
https://grafana.com/dashboards/4775

My day-to-day work is to deal with Linux and Windows systems. During my time off, I practice Karate
and Callisthenics, or play with some OpenBSD instances to host my personal IT services and explore
things.

How you first got involved with programming? What was your path?

I started programming using Logo and Basic on the Thomson MO5 my father brought home. Then in
school, I learned Turbo Pascal, and finally, in University, I learned C and JAVA. As a personal interest, I
learned shell programming on Bash and TCSH.

Reading your blog, we can see that you have a wide field of expertise. Please tell us which is
your favourite area?

I’m not sure if I have a favorite area. I’m more of an Ops than a Dev. And I know much about Systems
than Networks. But I can do storage, virtualization, email, network services, web stuff, etc. One of my
strengths is being able to deal with (nearly) any technology. I like to say, « if there’s a shell, there’s a
way. »

It seems the OpenBSD is your favorite OS? Why? What features are the best and what you like
the most?

The first reason I opted for OpenBSD, believe it or not, was because of its Puffy mascot. I liked it more
than the Penguin. Thus, I learned the OS. And I was fascinated by how it is built by developers. It’s
simple, efficient, and clean. What is supposed to work, « just works ». There was a period when I
mostly used NetBSD because of its documentation. However, I stopped using it when it started having
some glitches that OpenBSD didn’t have. Another reason why I like OpenBSD is its six months release
cadence. It’s easy to get prepared for OpenBSD upgrades. And you’re not digging for things that
changed on a chaotic cadence. I like the fact that the base system and the ports are separated, and the
fact that most of the software can be run and managed from binary packages. No more « wait 6H for
dependencies to compile ». Lastly, the feature I like most is syspatch(8). In my view, this makes the OS
Production ready for the enterprise. AFAIK doesn’t deal with port upgrades yet. But M:Tier’s openup
does the job at the moment.

What is your the most interesting programming issue you encountered, and why was it so
amazing?

As I said, I’m not a developer. So I have never encountered any real programming issue. But what’s
impressive is the ability of the OpenBSD Dev community to manage all this software that was not
designed to be running on OpenBSD.

What tools do you use most often, and why?

There’s every likelihood that OpenSSH, ksh, and Vim are among the top five. Other tools I frequently
use are cat, grep, less, and awk. Those are my day-to-day friends to manage, debug, improve or
correct IT services.

40

In the top 10 list, there would probably also be Word, Excel, and Powerpoint because I have to deal
with users that don’t read shell. Those are honestly great tools to show-off and explain things
toend-users.

What was the most difficult and challenging implementation you’ve done so far? Could you give
us some details?

The most challenging thing I’ve ever done was building a whole IT system. From racking the servers in
the datacenter to configuring a complete Active Directory + Exchange + SharePoint environment, while
still having to setup and manage the EMC SAN and the VMware vSphere infrastructure. We were five
guys working hard to set up that whole thing for 10 000 users. At that time, I only knew about Linux and
OpenBSD running on independent servers. Therefore, I had to learn those new technical infrastructure
layers, and understand how the Microsoft Services worked compared to the Open-Source Software I
knew. In the end, all went well. It is a great memory.

Can you tell us about your favourite features in the new releases of your favourite OS?

Not really. I don’t have any missing feature on my servers. They run in the Cloud, they run in the
virtualisation system I own. And they work well. Since 6.3, Grafana and the ELK stack are available.
Infact, they are more stable than the ones I run on some Ubuntu systems. Come to think of it, it’s
maybe the first time I don’t expect more from OpenBSD.

Do you have any specific goals for the rest of this year?

I would like to finish my Grafana dashboards for every service I run on my OpenBSD servers. I would
also like to find time to switch my WordPress instance from Apache to httpd(8). Further, I need to learn
about the Amazon Web Services and it’s way to implement Infrastructure as Code (IaC). That’s probably
my 2018 main goal.

What’s the best advice you can give to the BSD magazine readers?

Maybe to just do it with *BSD whenever it's possible. Even in big companies that paid for Microsoft or
RHEL support, I was able to set up a few OpenBSD boxes: a PF cluster to protect the network, a bunch
of OpenBSD/OpenSMTPD servers to relay internal emails, and an OAMP farm to publish web
applications. *BSD is not just for old nerds, hobbyists or SME. It can be used to provide high-quality IT
services. Hence, it’s important that the World should know about it.

That’s part of the reasons I write articles on my blog. To prove that you can do valuable things with
OpenBSD.

Thank you

41

Expert Speak by E.G.
Nadhan

From Unconscious Bias to
Unbiased Consciousness
A member of the audience attending a panel session on Unconscious Bias accidentally
referred to the topic as Unbiased Consciousness. Perhaps, it was no accident and was a
sublime message instead about the world to come – a world where we are consciously
unbiased rather than being unconsciously biased. However, this utopian world can
become real only if proactive actions are taken to combat such mindsets that may not be
in our control.

What’s the most challenging part of unconscious bias? It is unconscious. You don’t even know that you
are doing it while you are doing it. Yet the outcomes of your actions will speak for themselves – by
which time, it might be too late.

I recently attended this panel session on Unconscious bias and how to make your voice heard,
organized by SpringCM. I wanted to listen to and learn from the panelists on their first-hand
experiences being on the receiving end of unconscious bias. During the session, I began thinking about
the need for action on all fronts to combat this phenomenon.

The panel was moderated by Heather Christman, the senior director, strategy and development for
PeopleFoundry, while four distinguished panelists shared their insights: Manika M. Turnbull, Ph.D., VP &
Chief Diversity Officer at HCSC; Terri Brax, CEO at Women Tech Founders; Michelle Joseph, CEO &
founder at PeopleFoundry; and Andee Harris, CEO at Highground.

Insights on unconscious bias

Here are some realities about bias that surfaced through the various experiences of the panelists:

• Bias exists because people exist. It is pervasive.

42

https://www.eventbrite.com/e/women-in-tech-unconscious-bias-and-how-to-make-your-voice-heard-tickets-44228195724?aff=esli#
https://www.eventbrite.com/e/women-in-tech-unconscious-bias-and-how-to-make-your-voice-heard-tickets-44228195724?aff=esli#
https://www.eventbrite.com/e/women-in-tech-unconscious-bias-and-how-to-make-your-voice-heard-tickets-44228195724?aff=esli#
https://www.eventbrite.com/e/women-in-tech-unconscious-bias-and-how-to-make-your-voice-heard-tickets-44228195724?aff=esli#
https://www.springcm.com/
https://www.springcm.com/
https://www.springcm.com/
https://www.springcm.com/
http://www.peoplefoundry.com/
http://www.peoplefoundry.com/
http://www.peoplefoundry.com/
http://www.peoplefoundry.com/
http://www.hcsc.com/
http://www.hcsc.com/
http://www.hcsc.com/
http://www.hcsc.com/
https://womentechfounders.com/
https://womentechfounders.com/
https://womentechfounders.com/
https://womentechfounders.com/
https://www.highground.com/
https://www.highground.com/
https://www.highground.com/
https://www.highground.com/

• Bias is activated without the individual’s control, possibly leading to snap judgments and blind spots.

• Bias grows over the years in the world around you.

• Bias is fueled in the comfort zone of working with people like yourself.

• Bias is expedient – you’re just getting the work done.

• Bias surfaces in unexpected places, such as the words used in job descriptions, and holidays that are
celebrated within the enterprise.

• Bias comes across when the gender of the working parent triggers questions about parental
responsibilities.

Four ways to fight unconscious bias

These insights led me to wonder what we can do to consciously combat this unconscious bias. Here
are some of my thoughts on how we as leaders can fight it:

1. Groom. Human bias is based upon casual observations. We form opinions based on what we see in
the world around us resulting in our brains training themselves on repeating phenomena. That is the
way I have seen it – and therefore, that is the way it ought to be. Today’s workforce needs to have
balance, for example, including people of different genders, ethnicities, and physical challenges. So
does the workforce of tomorrow.

Today’s schoolchildren are tomorrow’s torchbearers and thought leaders. A healthy mix of children from
upcoming generations must be trained and motivated to engage in STEM projects.

Combat Force One: Grow the diversity in the future workforce.

2. Collaborate. While enterprises can take action within their firewalls, unconscious bias is human.
There are no corporate or regional boundaries for unconscious bias. As one panelist asserted, it is
pervasive across the extended enterprise. Therefore, it is vital for enterprises to join forces and take
action. This panel session is a fine example of such collaboration – but collaboration needs to be
extended to jointly take action across the corporate and the academic worlds.

Combat Force Two: Corporations can collaborate with academia to change the DNA of the workforce.

3. Cross-pollinate. Diverse teams must be staffed with people of different mindsets – not just a
segment of the community. Project teams benefit from input from a wide variety of people. (We have
heard some CIOs call this bringing “texture” to a problem-solving team. The texture - and
problem-solving power – of the group increases with the diversity of voices and ideas.) For example,
the fine panelists for this session (and the moderator) happened to be women who shared great
insights, triggering a thought-provoking conversation. Cognitive diversity is not about who you are but
how you think.

Combat Force Three: Rethink how you construct teams, keeping unconscious bias in mind.

43

4. Measure. Subjective conclusions are extremely difficult to measure. How much do I like a person?
Or not? Quantifiable performance outcomes matter. How is the overall performance of the enterprise
affected by gender diversity? Evidence (like this McKinsey research on diversity and corporate profits)
shows the positive impact diversity has on the overall financial performance of an organization. (See
also what MIT Sloan Professor Thomas Malone’s research says about high-performing teams.)

However, it is important that outcomes are measured, tracked and communicated at your enterprise –
to spread the information about the resulting benefits.

Combat Force Four: Quantify the performance of the enterprise.

I am sure there are enterprises who are already taking one or more of these steps. Do other solutions
come to mind? Please let me know.

Meet the Author

E.G. Nadhan is the Chief Technology Strategist for the Central Region at Red Hat. He provides thought
leadership on various concepts including Cloud, Big Data, Analytics and the Internet of Things (IoT)
through multiple channels including industry conferences, Executive Roundtables as well as customer
specific Executive Briefing sessions. With 25+ years of experience in the IT industry selling, delivering
and managing enterprise solutions for global corporations, he works with the executive leadership of
enterprises to innovatively drive Digital Transformation with a healthy blend of emerging solutions and a
DevOps mindset. Follow Nadhan on Twitter and LinkedIn.

44

https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters
https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters
https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters
https://www.mckinsey.com/business-functions/organization/our-insights/why-diversity-matters
https://www.nytimes.com/2015/01/18/opinion/sunday/why-some-teams-are-smarter-than-others.html?_r=0
https://www.nytimes.com/2015/01/18/opinion/sunday/why-some-teams-are-smarter-than-others.html?_r=0
https://www.nytimes.com/2015/01/18/opinion/sunday/why-some-teams-are-smarter-than-others.html?_r=0
https://www.nytimes.com/2015/01/18/opinion/sunday/why-some-teams-are-smarter-than-others.html?_r=0
https://twitter.com/NadhanEG
https://twitter.com/NadhanEG
https://www.linkedin.com/in/egnadhan
https://www.linkedin.com/in/egnadhan

45

3
Courses
Bundle

3 Courses Bundle from The BSD Magazine is designed to ensure that you can get all
relevant skills that will bring you one step ahead in your career.

3 Courses Bundle includes:

Devops with Chef on FreeBSD
This training class teaches the tools, best practices and skills to automate your FreeBSD servers.

Training will be loaded with practical real world tools and techniques.

Improve Your PostgreSQL Skills
The course aims to present the readers with a solid knowledge of PostgreSQL building blocks,
including the plpgsql language and how it can be used to build stored procedures and triggers.

Advanced features like Common Table Expression and Window Functions will be presented,
allowing the user to improve her SQL skills and know how to write better and more readable

queries.

Device Driver Development for BSD
This course is intended for C programmers who want to learn the basics of device driver

development.

GET STARTED!

https://bsdmag.org/product/3-courses-bundle/
https://bsdmag.org/product/3-courses-bundle/

Column

With Facebook attempting to slam the privacy stable
door well after the horse has bolted, the corporate giant
has suspended over 200 applications which snarfed
large amounts of profile data. What does the future hold
for this global platform?

Rob Somerville

I have a certain degree of sympathy for Mark Zuckerberg after being hauled before Congress in light of
the Cambridge Analytica fiasco. Inevitably, any cutting-edge technology will eventually feel the hot
breath of the establishment breathing down on it, be it via indirect legislation or as in the case of Mark
Zuckerberg, in personal appearance before “the powers that be” to give account.

If I was Mark Zuckerberg, I’d be worried. There is a Shakespearean idiom that fits this scenario
perfectly - “Hoisted with his own petard” - which means in plain English, to be blown up by your own
bomb. There can be few Facebook users that are ignorant of the whole sorry story, no doubt spread
and amplified and echoed via social media. Irrespective of the moral rights or wrongs here, you can be
assured the accusations surrounding Facebook will at the very least, lead to further government
regulation, and at worse, to the atrophying of the platform to such a degree that it will be sold off or
split up, not unlike the fate of IBM and the large US telecommunications companies. Or indeed, both.
Irritated governments in the media spotlight have a habit of using blunt instruments, and as we well
know, politicians and lawyers by nature don’t have a good grasp of the fundamental issues surrounding
IT.

I don’t think Facebook will suffer enormous censure out of this investigation, they are, after all, an
American company. The closest I can remember in history of this battle of giants was when lawyer
Ralph Nader, appeared in Congress to testify about automotive safety. His advocacy lead to the
adoption of the 1966 National Traffic and Motor Vehicle Safety Act, which forced car manufacturers
destined for the US market to equip vehicles with padded instrument panels, seat belts, and reversing

46

lights. This forced both the US and foreign manufacturers to take safety seriously, certainly as far as the
US market was concerned.

Personally, between fake news, the continuing increase in scandals surrounding child pornography, and
the focus on “hate speech” on social media platforms, I believe we are very close, or if not actually,
reaching a tipping point. Big government is getting more interested in big data. We are on treacherous
territory here, as the Internet is considered the bastion of free speech and expression. The danger here
is that Mark Zuckerberg has invited a close forensic examination of not only what Facebook is, but also
what it does, by an establishment that by design can only output a bland consensus. It might end up
with some common-sense legislation like the 1966 Act, which would be a good thing. It might not,
however. Facebook undoubtedly needs its wings clipped, and Mark Zuckerberg’s appearance in front
of Congress will have been a sobering moment for the disrupter CEO. How much, in reality, will this
carry through to Internet culture is a different matter entirely.

It is all very well when Facebook shouts from the rooftops the benefits they bring as a social media
provider. There can be no argument about the blessings they have brought to families, individuals, and
communities. They have also been responsible for a phenomenal amount of heartache, from the
spouse who has found out about their cheating partner, to the interview candidate who missed their
dream job due to a prior HR search. With power, comes responsibility. Playing about with the
developers API a few years ago confirmed my suspicions. Anyone with some decent kit could harvest
this data wholesale, and use it for nefarious purposes. Having seen UK supermarkets “data power”
gathered from point of sale datasets and loyalty cards prior to 2000, I shudder to think where Facebook
rests in 2018. Facebook needs, desperately, to get off the “we are a just a provider” fence. Hopefully,
Facebook might actually be facing some social responsibility and accountability for a change.

If Facebook wants to make a name for itself, they have a lot to learn. For instance, they might just want
to, occasionally, not hand data over to law enforcement or intelligence agencies, carte blanch. The UK
Guardian newspaper went through the surreal act of destroying hard drives with drills and angle
grinders in the presence of the security services, to protect Edward Snowden. That is data privacy in
action. Of course, Facebook is not a publisher, just a medium, or so they say. Where do you draw the
line between community service and private privacy if you are not a journalist? On the balance sheet.
There will be a bunch of individuals within the organization who understand the importance of the
trends reflected in the data, and that will be leveraged to maximize the profit. Which is why I don’t agree
with tax that is applied to carrier bags. I agree that the planet is a precious resource, and we need to
cut down on plastic. Most carrier bags these days carry a brand logo. Having to pay to advertise for a
corporate adds insult to injury. The same principle applies to Facebook, it might be free, but there is a
price to pay.

Facebook per se is a corporate marketing department’s wet dream. Be friendly, build a community, and
gather intelligence. Sorry, information. Sell, or leverage this data. Job done. Money made. I have a
teenage daughter who has pleaded with me not to look at her twitter feed. My wife, after discovering
some inappropriate comments on said daughter’s Facebook page, called her to account, and I was in
full agreement. After reading what was said, I really wish I had listened to my gut feeling and pulled out
the plug on my daughter’s social media access at an earlier point. The fact my daughter is ashamed to
share with her father what she types online, says something about the type of disconnect that
Facebook actively cultivates. I am too much of a gentleman to throw my little weight around, and I am
waiting for reality to kick in.

47

Facebook is now getting into the dating market. The Wall Street index had initially placed their bets on
FB. The Internet dating agencies stock has fallen. So, what’s my advice to isolated IT professionals?
Make real life friends, develop a real social circle, and your friends will sort it out. Until you hear or see
someone eat, you don’t get it. You will never get that on Facebook, and if you could, you can still act or
lie. Currently, said daughter has met her first boyfriend online, and as far as I can tell, he isn’t a
deadbeat. Where this relationship goes, God only knows. The desire to crack them both on the head
with the realities of data privacy, potential psychological damage, and realities of life is a constant
temptation, but they are both from the “plugged in” generation. A few hours without Internet access
and like heroin addicts going cold turkey, they will be invariably climbing the walls. Books, music, and
face-to-face interaction are an anathema to them both.

In reality, Facebook has diversified enough that even if their core platform becomes a pariah, as a
technology company, it has an exit strategy. The question on everyone’s lips is a simple one –
Facebook may have been a global social media electro-magnet, attracting the iron filings of our lives,
but where will that data turn up when the power is turned off?

48

49

50

www.balabit.com

Among clouds

 Performance and

 Reliability is critical

syslog-ng log server
The world’s first High-Speed Reliable LoggingTM technology

HIGH-SPEED RELIABLE LOGGING
above 500 000 messages per second

zero message loss due to the

Reliable Log Transfer ProtocolTM

trusted log transfer and storage

Download syslog-ng Premium Edition

product evaluation here

Attend to a free logging tech webinar here

The High-Speed Reliable LoggingTM (HSRL) and Reliable Log Transfer ProtocolTM (RLTP) names are registered trademarks of BalaBit IT Security.

